Skip to main content
Erschienen in: Clinical Pharmacokinetics 6/2018

18.09.2017 | Original Research Article

A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways

verfasst von: André Dallmann, Ibrahim Ince, Katrin Coboeken, Thomas Eissing, Georg Hempel

Erschienen in: Clinical Pharmacokinetics | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes.

Methods

Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature.

Results

The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration–time curve was within a 1.25-fold error range.

Conclusion

The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dawes M, Chowienczyk PJ. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.PubMedCrossRef Dawes M, Chowienczyk PJ. Pharmacokinetics in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2001;15(6):819–26.PubMedCrossRef
2.
Zurück zum Zitat Anderson GD. Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet. 2005;44(10):989–1008.PubMedCrossRef Anderson GD. Pregnancy-induced changes in pharmacokinetics. Clin Pharmacokinet. 2005;44(10):989–1008.PubMedCrossRef
3.
Zurück zum Zitat Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.PubMedPubMedCentralCrossRef Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos. 2013;41(2):256–62.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st ed. New York: Academic Press/Elsevier; 2013. p. 17–39.CrossRef Hebert MF. Impact of pregnancy on maternal pharmacokinetics of medications. In: Mattison DR, editor. Clinical pharmacology during pregnancy. 1st ed. New York: Academic Press/Elsevier; 2013. p. 17–39.CrossRef
6.
Zurück zum Zitat Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.PubMedCrossRef Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.PubMedCrossRef
7.
Zurück zum Zitat O’Hare M, Leahey W, Murnaghan G, McDevitt D. Pharmacokinetics of sotalol during pregnancy. Eur J Clin Pharmacol. 1983;24(4):521–4.PubMedCrossRef O’Hare M, Leahey W, Murnaghan G, McDevitt D. Pharmacokinetics of sotalol during pregnancy. Eur J Clin Pharmacol. 1983;24(4):521–4.PubMedCrossRef
8.
Zurück zum Zitat O’Hare M, Kinney C, Murnaghan G, McDevitt D. Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol. 1984;27(5):583–7.PubMedCrossRef O’Hare M, Kinney C, Murnaghan G, McDevitt D. Pharmacokinetics of propranolol during pregnancy. Eur J Clin Pharmacol. 1984;27(5):583–7.PubMedCrossRef
9.
Zurück zum Zitat Philipson A, Stiernstedt G, Ehrnebo M. Comparison of the pharmacokinetics of cephradine and cefazolin in pregnant and non-pregnant women. Clin Pharmacokinet. 1987;12(2):136–44.PubMedCrossRef Philipson A, Stiernstedt G, Ehrnebo M. Comparison of the pharmacokinetics of cephradine and cefazolin in pregnant and non-pregnant women. Clin Pharmacokinet. 1987;12(2):136–44.PubMedCrossRef
10.
Zurück zum Zitat Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.PubMedCrossRef Heikkilä A, Erkkola R. Pharmacokinetics of piperacillin during pregnancy. J Antimicrob Chemother. 1991;28(3):419–23.PubMedCrossRef
11.
Zurück zum Zitat Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Frederiksen MC, Ruo TI, Chow MJ, Atkinson AJ. Theophylline pharmacokinetics in pregnancy. Clin Pharmacol Ther. 1986;40(3):321–8.PubMedCrossRef Frederiksen MC, Ruo TI, Chow MJ, Atkinson AJ. Theophylline pharmacokinetics in pregnancy. Clin Pharmacol Ther. 1986;40(3):321–8.PubMedCrossRef
13.
Zurück zum Zitat Brazier J, Ritter J, Berland M, Khenfer D, Faucon G. Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther. 1983;6(5):315–22.PubMedCrossRef Brazier J, Ritter J, Berland M, Khenfer D, Faucon G. Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther. 1983;6(5):315–22.PubMedCrossRef
14.
Zurück zum Zitat Högstedt S, Lindberg B, Peng DR, Regårdh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–92.PubMedCrossRef Högstedt S, Lindberg B, Peng DR, Regårdh CG, Rane A. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–92.PubMedCrossRef
15.
Zurück zum Zitat Rey E, d’Athis P, Giraux P, De Lauture D, Turquais J, Chavinie J, et al. Pharmacokinetics of clorazepate in pregnant and non-pregnant women. Eur J Clin Pharmacol. 1979;15(3):175–80.PubMedCrossRef Rey E, d’Athis P, Giraux P, De Lauture D, Turquais J, Chavinie J, et al. Pharmacokinetics of clorazepate in pregnant and non-pregnant women. Eur J Clin Pharmacol. 1979;15(3):175–80.PubMedCrossRef
16.
Zurück zum Zitat Hebert M, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.PubMedCrossRef Hebert M, Easterling T, Kirby B, Carr D, Buchanan M, Rutherford T, et al. Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington Specialized Center of Research study. Clin Pharmacol Ther. 2008;84(2):248–53.PubMedCrossRef
17.
Zurück zum Zitat Hebert MF, Carr DB, Anderson GD, Blough D, Green GE, Brateng DA, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.PubMedCrossRef Hebert MF, Carr DB, Anderson GD, Blough D, Green GE, Brateng DA, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33.PubMedCrossRef
18.
Zurück zum Zitat Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.PubMedCrossRef Philipson A, Stiernstedt G. Pharmacokinetics of cefuroxime in pregnancy. Am J Obstet Gynecol. 1982;142(7):823–8.PubMedCrossRef
19.
Zurück zum Zitat Theil F-P, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett. 2003;138(1):29–49.PubMedCrossRef Theil F-P, Guentert TW, Haddad S, Poulin P. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett. 2003;138(1):29–49.PubMedCrossRef
20.
Zurück zum Zitat Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers. 2005;2(11):1462–86.PubMedCrossRef Lüpfert C, Reichel A. Development and application of physiologically based pharmacokinetic-modeling tools to support drug discovery. Chem Biodivers. 2005;2(11):1462–86.PubMedCrossRef
22.
Zurück zum Zitat Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0538-0 (epub ahead of print). Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017. doi:10.​1007/​s40262-017-0538-0 (epub ahead of print).
23.
Zurück zum Zitat Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2(4):1–10. Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, et al. A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2(4):1–10.
24.
Zurück zum Zitat Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4.CrossRef Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1(4):121–4.CrossRef
25.
Zurück zum Zitat Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.PubMedCrossRef Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiology-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34(3):401–31.PubMedCrossRef
26.
Zurück zum Zitat Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017. doi:10.1007/s40262-017-0539-z (epub ahead of print). Dallmann A, Ince I, Meyer M, Willmann S, Eissing T, Hempel G. Gestation-specific changes in the anatomy and physiology of healthy pregnant women: an extended repository of model parameters for physiologically based pharmacokinetic modeling in pregnancy. Clin Pharmacokinet. 2017. doi:10.​1007/​s40262-017-0539-z (epub ahead of print).
27.
Zurück zum Zitat Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.PubMedCrossRef Meyer M, Schneckener S, Ludewig B, Kuepfer L, Lippert J. Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling. Drug Metab Dispos. 2012;40(5):892–901.PubMedCrossRef
28.
Zurück zum Zitat Bologa M, Tang B, Klein J, Tesoro A, Koren G. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther. 1991;257(2):735–40.PubMed Bologa M, Tang B, Klein J, Tesoro A, Koren G. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther. 1991;257(2):735–40.PubMed
29.
Zurück zum Zitat Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.PubMedCrossRef Tracy TS, Venkataramanan R, Glover DD, Caritis SN. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.PubMedCrossRef
30.
Zurück zum Zitat Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.PubMedCrossRef Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.PubMedCrossRef
31.
Zurück zum Zitat Messina E, Tyndale R, Sellers E. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.PubMed Messina E, Tyndale R, Sellers E. A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther. 1997;282(3):1608–14.PubMed
32.
Zurück zum Zitat Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, et al. CYP2A6 is a principal enzyme involved in hydroxylation of 1, 7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos. 2005;33(9):1361–6.PubMedCrossRef Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, et al. CYP2A6 is a principal enzyme involved in hydroxylation of 1, 7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos. 2005;33(9):1361–6.PubMedCrossRef
33.
Zurück zum Zitat Dempsey D, Jacob P, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.PubMedCrossRef Dempsey D, Jacob P, Benowitz NL. Accelerated metabolism of nicotine and cotinine in pregnant smokers. J Pharmacol Exp Ther. 2002;301(2):594–8.PubMedCrossRef
34.
Zurück zum Zitat Kulo A, Peeters MY, Allegaert K, Smits A, Hoon J, Verbesselt R, et al. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol. 2013;75(3):850–60.PubMedPubMedCentralCrossRef Kulo A, Peeters MY, Allegaert K, Smits A, Hoon J, Verbesselt R, et al. Pharmacokinetics of paracetamol and its metabolites in women at delivery and post-partum. Br J Clin Pharmacol. 2013;75(3):850–60.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin Pharmacol Ther. 2000;67(3):275–82.PubMedCrossRef
36.
Zurück zum Zitat Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, et al. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β-hydroxycholesterol. Eur J Clin Pharmacol. 2011;67(7):715–22.PubMedCrossRef Nylén H, Sergel S, Forsberg L, Lindemalm S, Bertilsson L, Wide K, et al. Cytochrome P450 3A activity in mothers and their neonates as determined by plasma 4β-hydroxycholesterol. Eur J Clin Pharmacol. 2011;67(7):715–22.PubMedCrossRef
37.
Zurück zum Zitat Ke A, Nallani S, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1–10.CrossRef Ke A, Nallani S, Zhao P, Rostami-Hodjegan A, Unadkat JD. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):1–10.CrossRef
38.
Zurück zum Zitat De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef
39.
Zurück zum Zitat Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–70.PubMedPubMedCentralCrossRef Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol. 2014;77(3):554–70.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13.PubMedPubMedCentralCrossRef Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Isoherranen N, Unadkat JD. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women. Drug Metab Dispos. 2013;41(4):801–13.PubMedPubMedCentralCrossRef
41.
42.
Zurück zum Zitat Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenet Genom. 1996;6(2):159–76.CrossRef Fuhr U, Rost KL, Engelhardt R, Sachs M, Liermann D, Belloc C, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenet Genom. 1996;6(2):159–76.CrossRef
43.
Zurück zum Zitat Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11(2):109–26.PubMedCrossRef Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11(2):109–26.PubMedCrossRef
44.
Zurück zum Zitat Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37(8):693–703.PubMedCrossRef Kaplan GB, Greenblatt DJ, Ehrenberg BL, Goddard JE, Cotreau MM, Harmatz JS, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37(8):693–703.PubMedCrossRef
45.
Zurück zum Zitat Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J. Evolution of a detailed physiological model to simulate the gastrointestinal transit and absorption process in humans, part 1: oral solutions. J Pharm Sci. 2011;100(12):5324–45.PubMedCrossRef
46.
Zurück zum Zitat Heizmann P, Ziegler W. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1980;31(12a):2220–3. Heizmann P, Ziegler W. Excretion and metabolism of 14C-midazolam in humans following oral dosing. Arzneimittelforschung. 1980;31(12a):2220–3.
47.
Zurück zum Zitat Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938–44.PubMedCrossRef Patki KC, von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos. 2003;31(7):938–44.PubMedCrossRef
48.
Zurück zum Zitat Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, et al. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug–drug interactions and co-medication regimens. AAPS J. 2017;19(1):298–312.PubMedCrossRef Moj D, Hanke N, Britz H, Frechen S, Kanacher T, Wendl T, et al. Clarithromycin, midazolam, and digoxin: application of PBPK modeling to gain new insights into drug–drug interactions and co-medication regimens. AAPS J. 2017;19(1):298–312.PubMedCrossRef
49.
Zurück zum Zitat Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.PubMedCrossRef Bode H, Brendel E, Ahr G, Fuhr U, Harder S, Staib A. Investigation of nifedipine absorption in different regions of the human gastrointestinal (GI) tract after simultaneous administration of 13C-and 12C-nifedipine. Eur J Clin Pharmacol. 1996;50(3):195–201.PubMedCrossRef
50.
Zurück zum Zitat Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef Rashid T, Martin U, Clarke H, Waller D, Renwick A, George C. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol. 1995;40(1):51–8.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Soons P, Schoemaker H, Cohen A, Breimer D. Intraindividual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol. 1992;32(4):324–31.PubMedCrossRef Soons P, Schoemaker H, Cohen A, Breimer D. Intraindividual variability in nifedipine pharmacokinetics and effects in healthy subjects. J Clin Pharmacol. 1992;32(4):324–31.PubMedCrossRef
52.
Zurück zum Zitat Reitberg DP, Love SJ, Quercia GT, Zinny MA. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther. 1987;42(1):72–5.PubMedCrossRef Reitberg DP, Love SJ, Quercia GT, Zinny MA. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther. 1987;42(1):72–5.PubMedCrossRef
53.
Zurück zum Zitat Renwick A, Vie J, Challenor V, Waller D, Gruchy B, George C. Factors affecting the pharmacokinetics of nifedipine. Eur J Clin Pharmacol. 1987;32(4):351–5.PubMedCrossRef Renwick A, Vie J, Challenor V, Waller D, Gruchy B, George C. Factors affecting the pharmacokinetics of nifedipine. Eur J Clin Pharmacol. 1987;32(4):351–5.PubMedCrossRef
54.
Zurück zum Zitat Ahsan C, Renwick A, Macklin B, Challenor V, Waller D, George C. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol. 1991;31(4):399–403.PubMedPubMedCentralCrossRef Ahsan C, Renwick A, Macklin B, Challenor V, Waller D, George C. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol. 1991;31(4):399–403.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Harris RZ, Inglis AML, Miller AK, Thompson KA, Finnerty D, Patterson S, et al. Rosiglitazone has no clinically significant effect on nifedipine pharmacokinetics. J Clin Pharmacol. 1999;39(11):1189–94.PubMed Harris RZ, Inglis AML, Miller AK, Thompson KA, Finnerty D, Patterson S, et al. Rosiglitazone has no clinically significant effect on nifedipine pharmacokinetics. J Clin Pharmacol. 1999;39(11):1189–94.PubMed
56.
Zurück zum Zitat Smith S, Kendall M, Lobo J, Beerahee A, Jack D, Wilkins M. Ranitidine and cimetidine; drug interactions with single dose and steady-state nifedipine administration. Br J Clin Pharmacol. 1987;23(3):311–5.PubMedPubMedCentralCrossRef Smith S, Kendall M, Lobo J, Beerahee A, Jack D, Wilkins M. Ranitidine and cimetidine; drug interactions with single dose and steady-state nifedipine administration. Br J Clin Pharmacol. 1987;23(3):311–5.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Quinney S, Mohamed A, Hebert MF, Haas D, Clark S, Umans J, et al. A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2012;1(9):1–9.CrossRef Quinney S, Mohamed A, Hebert MF, Haas D, Clark S, Umans J, et al. A semi-mechanistic metabolism model of CYP3A substrates in pregnancy: predicting changes in midazolam and nifedipine pharmacokinetics. CPT Pharmacomet Syst Pharmacol. 2012;1(9):1–9.CrossRef
58.
Zurück zum Zitat Regårdh CG, Borg KO, Johansson R, Johnsson G, Palmer L. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.PubMedCrossRef Regårdh CG, Borg KO, Johansson R, Johnsson G, Palmer L. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man. J Pharmacokinet Biopharm. 1974;2(4):347–64.PubMedCrossRef
59.
Zurück zum Zitat Otton S, Crewe H, Lennard M, Tucker G, Woods H. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988;247(1):242–7.PubMed Otton S, Crewe H, Lennard M, Tucker G, Woods H. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther. 1988;247(1):242–7.PubMed
60.
Zurück zum Zitat Simpson KH, Hicks FM. Clinical pharmacokinetics of ondansetron: a review. J Pharm Pharmacol. 1996;48(8):774–81.PubMedCrossRef Simpson KH, Hicks FM. Clinical pharmacokinetics of ondansetron: a review. J Pharm Pharmacol. 1996;48(8):774–81.PubMedCrossRef
61.
Zurück zum Zitat Elkomy MH, Sultan P, Carvalho B, Peltz G, Wu M, Clavijo C, et al. Ondansetron pharmacokinetics in pregnant women and neonates: towards a new treatment for neonatal abstinence syndrome. Clin Pharmacol Ther. 2015;97(2):167–76.PubMedCrossRef Elkomy MH, Sultan P, Carvalho B, Peltz G, Wu M, Clavijo C, et al. Ondansetron pharmacokinetics in pregnant women and neonates: towards a new treatment for neonatal abstinence syndrome. Clin Pharmacol Ther. 2015;97(2):167–76.PubMedCrossRef
62.
Zurück zum Zitat Dixon C, Colthup P, Serabjit-Singh C, Kerr B, Boehlert C, Park G, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995;23(11):1225–30.PubMed Dixon C, Colthup P, Serabjit-Singh C, Kerr B, Boehlert C, Park G, et al. Multiple forms of cytochrome P450 are involved in the metabolism of ondansetron in humans. Drug Metab Dispos. 1995;23(11):1225–30.PubMed
63.
Zurück zum Zitat Clarke S, Austin N, Bloomer J, Haddock R, Higham F, Hollis F, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.PubMedCrossRef Clarke S, Austin N, Bloomer J, Haddock R, Higham F, Hollis F, et al. Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Xenobiotica. 1994;24(11):1119–31.PubMedCrossRef
64.
Zurück zum Zitat Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005;6(5):469–80.PubMedCrossRef Nakamura H, Ariyoshi N, Okada K, Nakasa H, Nakazawa K, Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr Drug Metab. 2005;6(5):469–80.PubMedCrossRef
65.
Zurück zum Zitat Carmichael J, Cantwell B, Edwards C, Zussman B, Thompson S, Rapeport W, et al. A pharmacokinetic study of granisetron (BRL 43694A), a selective 5-HT3 receptor antagonist: correlation with anti-emetic response. Cancer Chemother Pharmacol. 1989;24(1):45–9.PubMedCrossRef Carmichael J, Cantwell B, Edwards C, Zussman B, Thompson S, Rapeport W, et al. A pharmacokinetic study of granisetron (BRL 43694A), a selective 5-HT3 receptor antagonist: correlation with anti-emetic response. Cancer Chemother Pharmacol. 1989;24(1):45–9.PubMedCrossRef
66.
Zurück zum Zitat Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R. Polymorphisms in CYP1A1 and CYP3A5 genes contribute to the variability in granisetron clearance and exposure in pregnant women with nausea and vomiting. Pharmacotherapy. 2016;36(12):1238–44.PubMedCrossRef Bustos ML, Zhao Y, Chen H, Caritis SN, Venkataramanan R. Polymorphisms in CYP1A1 and CYP3A5 genes contribute to the variability in granisetron clearance and exposure in pregnant women with nausea and vomiting. Pharmacotherapy. 2016;36(12):1238–44.PubMedCrossRef
67.
Zurück zum Zitat Klotz U, Avant G, Hoyumpa A, Schenker S, Wilkinson G. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.PubMedPubMedCentralCrossRef Klotz U, Avant G, Hoyumpa A, Schenker S, Wilkinson G. The effects of age and liver disease on the disposition and elimination of diazepam in adult man. J Clin Invest. 1975;55(2):347–59.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Klotz U, Antonin K, Bieck P. Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur J Clin Pharmacol. 1976;10(2):121–6.PubMedCrossRef Klotz U, Antonin K, Bieck P. Comparison of the pharmacokinetics of diazepam after single and subchronic doses. Eur J Clin Pharmacol. 1976;10(2):121–6.PubMedCrossRef
69.
Zurück zum Zitat Jack M, Colburn W. Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration. J Pharm Sci. 1983;72(11):1318–23.PubMedCrossRef Jack M, Colburn W. Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration. J Pharm Sci. 1983;72(11):1318–23.PubMedCrossRef
70.
Zurück zum Zitat Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol. 1988;28(9):853–9.PubMedCrossRef Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol. 1988;28(9):853–9.PubMedCrossRef
71.
Zurück zum Zitat Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45(4):348–55.PubMedCrossRef Bertilsson L, Henthorn TK, Sanz E, Tybring G, Säwe J, Villén T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45(4):348–55.PubMedCrossRef
72.
Zurück zum Zitat Andersson T, Miners J, Veronese M, Birkett D. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef Andersson T, Miners J, Veronese M, Birkett D. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez F, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26(11):1155–66.PubMedCrossRef Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez F, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica. 1996;26(11):1155–66.PubMedCrossRef
74.
Zurück zum Zitat Magnussen I, Oxlund H, Alsbirk K, Arnold E. Absorption of diazepam in man following rectal and parenteral administration. Acta Pharmacol Toxicol. 1979;45(2):87–90.CrossRef Magnussen I, Oxlund H, Alsbirk K, Arnold E. Absorption of diazepam in man following rectal and parenteral administration. Acta Pharmacol Toxicol. 1979;45(2):87–90.CrossRef
75.
Zurück zum Zitat Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45(4):356–65.PubMedCrossRef Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45(4):356–65.PubMedCrossRef
76.
Zurück zum Zitat Ridd MJ, Brown KF, Nation RL, Collier CB. The disposition and placental transfer of diazepam in cesarean section. Clin Pharmacol Ther. 1989;45(5):506–12.PubMedCrossRef Ridd MJ, Brown KF, Nation RL, Collier CB. The disposition and placental transfer of diazepam in cesarean section. Clin Pharmacol Ther. 1989;45(5):506–12.PubMedCrossRef
77.
Zurück zum Zitat Mandelli M, Morselli P, Nordio S, Pardi G, Principi N, Sereni F, et al. Placental transfer of diazepam and its disposition in the newborn. Clin Pharmacol Ther. 1975;17(5):564–72.PubMedCrossRef Mandelli M, Morselli P, Nordio S, Pardi G, Principi N, Sereni F, et al. Placental transfer of diazepam and its disposition in the newborn. Clin Pharmacol Ther. 1975;17(5):564–72.PubMedCrossRef
78.
Zurück zum Zitat Moore R, McBride W. The disposition kinetics of diazepam in pregnant women at parturition. Eur J Clin Pharmacol. 1978;13(4):275–84.PubMedCrossRef Moore R, McBride W. The disposition kinetics of diazepam in pregnant women at parturition. Eur J Clin Pharmacol. 1978;13(4):275–84.PubMedCrossRef
79.
Zurück zum Zitat Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacol Toxicol. 1990;66(s6):1–31.PubMedCrossRef Loft S. Metronidazole and antipyrine as probes for the study of foreign compound metabolism. Pharmacol Toxicol. 1990;66(s6):1–31.PubMedCrossRef
80.
Zurück zum Zitat Houghton G, Thorne P, Smith J, Templeton R, Collier J. Comparison of the pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979;8(4):337–41.PubMedPubMedCentralCrossRef Houghton G, Thorne P, Smith J, Templeton R, Collier J. Comparison of the pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979;8(4):337–41.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94.PubMedPubMedCentralCrossRef Pearce RE, Cohen-Wolkowiez M, Sampson MR, Kearns GL. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab Dispos. 2013;41(9):1686–94.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Visser A, Hundt H. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984;13(3):279–83.PubMedCrossRef Visser A, Hundt H. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984;13(3):279–83.PubMedCrossRef
83.
Zurück zum Zitat Quattrochi L, Vu T, Tukey R. The human CYP1A2 gene and induction by 3-methylcholanthrene: a region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.PubMed Quattrochi L, Vu T, Tukey R. The human CYP1A2 gene and induction by 3-methylcholanthrene: a region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem. 1994;269(9):6949–54.PubMed
84.
Zurück zum Zitat Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, et al. Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. FEBS J. 1996;237(3):642–52. Daujat M, Charrasse S, Fabre I, Lesca P, Jounaidi Y, Larroque C, et al. Induction of CYP1A1 gene by benzimidazole derivatives during Caco-2 cell differentiation. FEBS J. 1996;237(3):642–52.
85.
Zurück zum Zitat Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999;274(6):3430–8.PubMedCrossRef Ricci MS, Toscano DG, Mattingly CJ, Toscano WA. Estrogen receptor reduces CYP1A1 induction in cultured human endometrial cells. J Biol Chem. 1999;274(6):3430–8.PubMedCrossRef
86.
Zurück zum Zitat Lai K, Wong M, Wong CK. Modulation of Ahr-mediated CYP1A1 mRNA and EROD activities by 17β-estradiol and dexamethasone in TCDD-induced H411E cells. Toxicol Sci. 2004;78(1):41–9.PubMedCrossRef Lai K, Wong M, Wong CK. Modulation of Ahr-mediated CYP1A1 mRNA and EROD activities by 17β-estradiol and dexamethasone in TCDD-induced H411E cells. Toxicol Sci. 2004;78(1):41–9.PubMedCrossRef
87.
Zurück zum Zitat Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev. 2010;19(10):2582–9.CrossRef Williams JM, Gandhi KK, Benowitz NL. Carbamazepine but not valproate induces CYP2A6 activity in smokers with mental illness. Cancer Epidemiol Biomark Prev. 2010;19(10):2582–9.CrossRef
88.
Zurück zum Zitat Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.PubMedCrossRef Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51.PubMedCrossRef
89.
Zurück zum Zitat Poland RE, Pechnick RN, Cloak CC, Wan Y-JY, Nuccio I, Lin K-M. Effect of cigarette smoking on coumarin metabolism in humans. Nicotine Tob Res. 2000;2(4):351–4.PubMedCrossRef Poland RE, Pechnick RN, Cloak CC, Wan Y-JY, Nuccio I, Lin K-M. Effect of cigarette smoking on coumarin metabolism in humans. Nicotine Tob Res. 2000;2(4):351–4.PubMedCrossRef
90.
Zurück zum Zitat Iscan M, Rostami H, Güray T, Pelkonen O, Rautio A. Interindividual variability of coumarin 7-hydroxylation in a Turkish population. Eur J Clin Pharmacol. 1994;47(4):315–8.PubMedCrossRef Iscan M, Rostami H, Güray T, Pelkonen O, Rautio A. Interindividual variability of coumarin 7-hydroxylation in a Turkish population. Eur J Clin Pharmacol. 1994;47(4):315–8.PubMedCrossRef
91.
Zurück zum Zitat Hendricks CH, Quilligan EJ. Cardiac output during labor. Am J Obstet Gynecol. 1956;71(5):953–72.PubMedCrossRef Hendricks CH, Quilligan EJ. Cardiac output during labor. Am J Obstet Gynecol. 1956;71(5):953–72.PubMedCrossRef
92.
Zurück zum Zitat Robson S, Dunlop W, Boys R, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295(6607):1169–72.CrossRef Robson S, Dunlop W, Boys R, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295(6607):1169–72.CrossRef
93.
Zurück zum Zitat Klotz U, Antonin K, Bieck P. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199(1):67–73.PubMed Klotz U, Antonin K, Bieck P. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther. 1976;199(1):67–73.PubMed
94.
Zurück zum Zitat Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Philipson A. Pharmacokinetics of ampicillin during pregnancy. J Infect Dis. 1977;136(3):370–6.PubMedCrossRef Philipson A. Pharmacokinetics of ampicillin during pregnancy. J Infect Dis. 1977;136(3):370–6.PubMedCrossRef
96.
Zurück zum Zitat Sandhar B, Elliott R, Windram I, Rowbotham D. Peripartum changes in gastric emptying. Anaesthesia. 1992;47(3):196–8.PubMedCrossRef Sandhar B, Elliott R, Windram I, Rowbotham D. Peripartum changes in gastric emptying. Anaesthesia. 1992;47(3):196–8.PubMedCrossRef
97.
Zurück zum Zitat Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538–43.PubMedCrossRef Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36(8):538–43.PubMedCrossRef
98.
Zurück zum Zitat Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. J Am Soc Anesthesiol. 2002;96(6):1395–400.CrossRef Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. J Am Soc Anesthesiol. 2002;96(6):1395–400.CrossRef
99.
Zurück zum Zitat Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Digest Dis Sci. 1982;27(11):1015–8.PubMedCrossRef Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Digest Dis Sci. 1982;27(11):1015–8.PubMedCrossRef
100.
Zurück zum Zitat Cripps A, Williams V. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975;33(01):17–32.PubMedCrossRef Cripps A, Williams V. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975;33(01):17–32.PubMedCrossRef
101.
Zurück zum Zitat Sarvestani FS, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015;6(1):69–73. Sarvestani FS, Rahmanifar F, Tamadon A. Histomorphometric changes of small intestine in pregnant rat. Vet Res Forum. 2015;6(1):69–73.
102.
Zurück zum Zitat Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther. 1999;65(4):377–81.PubMedCrossRef Villikka K, Kivistö KT, Neuvonen PJ. The effect of rifampin on the pharmacokinetics of oral and intravenous ondansetron. Clin Pharmacol Ther. 1999;65(4):377–81.PubMedCrossRef
103.
Zurück zum Zitat Ashforth E, Palmer J, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol. 1994;37(4):389–91.PubMedPubMedCentralCrossRef Ashforth E, Palmer J, Bye A, Bedding A. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol. 1994;37(4):389–91.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12(9):546–54. Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12(9):546–54.
106.
107.
Zurück zum Zitat Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.PubMedCrossRef Yamazaki K, Kanaoka M. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J Pharm Sci. 2004;93(6):1480–94.PubMedCrossRef
108.
Zurück zum Zitat Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.PubMedCrossRef Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.PubMedCrossRef
109.
Zurück zum Zitat Belpaire F, Bogaert M, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol. 1982;22(3):253–6.PubMedCrossRef Belpaire F, Bogaert M, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. Eur J Clin Pharmacol. 1982;22(3):253–6.PubMedCrossRef
110.
Zurück zum Zitat Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26(6):1456–66.PubMedCrossRef Clarysse S, Psachoulias D, Brouwers J, Tack J, Annaert P, Duchateau G, et al. Postprandial changes in solubilizing capacity of human intestinal fluids for BCS class II drugs. Pharm Res. 2009;26(6):1456–66.PubMedCrossRef
111.
Zurück zum Zitat PK-Sim user manual and software, 6.3. Leverkusen, Germany: Bayer Technology Services GmbH. 2016. PK-Sim user manual and software, 6.3. Leverkusen, Germany: Bayer Technology Services GmbH. 2016.
112.
Zurück zum Zitat Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRef Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.PubMedCrossRef
113.
Zurück zum Zitat Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef
114.
Zurück zum Zitat Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharm Exp Ther. 2006;318(3):1220–9.CrossRef Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharm Exp Ther. 2006;318(3):1220–9.CrossRef
115.
Zurück zum Zitat Madani S, Paine MF, Lewis L, Thummel KE, Shen DD. Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res. 1999;16(8):1199–205.PubMedCrossRef Madani S, Paine MF, Lewis L, Thummel KE, Shen DD. Comparison of CYP2D6 content and metoprolol oxidation between microsomes isolated from human livers and small intestines. Pharm Res. 1999;16(8):1199–205.PubMedCrossRef
116.
Zurück zum Zitat Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.PubMedCrossRef Claassen K, Thelen K, Coboeken K, Gaub T, Lippert J, Allegaert K, et al. Development of a physiologically-based pharmacokinetic model for preterm neonates: evaluation with in vivo data. Curr Pharm Des. 2015;21(39):5688–98.PubMedCrossRef
117.
Zurück zum Zitat Caron G, Ermondi G, Damiano A, Novaroli L, Tsinman O, Ruell JA, et al. Ionization, lipophilicity, and molecular modeling to investigate permeability and other biological properties of amlodipine. Bioorg Med Chem. 2004;12(23):6107–18.PubMedCrossRef Caron G, Ermondi G, Damiano A, Novaroli L, Tsinman O, Ruell JA, et al. Ionization, lipophilicity, and molecular modeling to investigate permeability and other biological properties of amlodipine. Bioorg Med Chem. 2004;12(23):6107–18.PubMedCrossRef
118.
Zurück zum Zitat Mannhold R, Rodenkirchen R, Bayer R, Haas W. The importance of drug ionization for the action of calcium-antagonists and related compounds. Arzneimittelforschung. 1983;34(4):407–9. Mannhold R, Rodenkirchen R, Bayer R, Haas W. The importance of drug ionization for the action of calcium-antagonists and related compounds. Arzneimittelforschung. 1983;34(4):407–9.
119.
Zurück zum Zitat Somers G, Harris A, Bayliss M, Houston J. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37(8):832–54.PubMedCrossRef Somers G, Harris A, Bayliss M, Houston J. The metabolism of the 5HT3 antagonists ondansetron, alosetron and GR87442 I: a comparison of in vitro and in vivo metabolism and in vitro enzyme kinetics in rat, dog and human hepatocytes, microsomes and recombinant human enzymes. Xenobiotica. 2007;37(8):832–54.PubMedCrossRef
120.
Zurück zum Zitat Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9):475–85.PubMedCrossRef Zhang F, Xue J, Shao J, Jia L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9):475–85.PubMedCrossRef
121.
Zurück zum Zitat Perucca E, Ruprah M, Richens A. Altered drug binding to serum proteins in pregnant women: therapeutic relevance. J R Soc Med. 1981;74(6):422–6.PubMedPubMedCentralCrossRef Perucca E, Ruprah M, Richens A. Altered drug binding to serum proteins in pregnant women: therapeutic relevance. J R Soc Med. 1981;74(6):422–6.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef
123.
Zurück zum Zitat Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef
124.
Zurück zum Zitat Alelyunas YW, Empfield JR, McCarthy D, Spreen RC, Bui K, Pelosi-Kilby L, et al. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg Med Chem Lett. 2010;20(24):7312–6.PubMedCrossRef Alelyunas YW, Empfield JR, McCarthy D, Spreen RC, Bui K, Pelosi-Kilby L, et al. Experimental solubility profiling of marketed CNS drugs, exploring solubility limit of CNS discovery candidate. Bioorg Med Chem Lett. 2010;20(24):7312–6.PubMedCrossRef
125.
Zurück zum Zitat Crifasi JA, Bruder MF, Long CW, Janssen K. Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. J Anal Toxicol. 2006;30(8):581–92.PubMedCrossRef Crifasi JA, Bruder MF, Long CW, Janssen K. Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. J Anal Toxicol. 2006;30(8):581–92.PubMedCrossRef
126.
Zurück zum Zitat Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.PubMedCrossRef Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1–2):185–92.PubMedCrossRef
127.
Zurück zum Zitat Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606.PubMedCrossRef Shalaeva M, Kenseth J, Lombardo F, Bastin A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97(7):2581–606.PubMedCrossRef
128.
Zurück zum Zitat Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.PubMedCrossRef Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.PubMedCrossRef
Metadaten
Titel
A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways
verfasst von
André Dallmann
Ibrahim Ince
Katrin Coboeken
Thomas Eissing
Georg Hempel
Publikationsdatum
18.09.2017
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 6/2018
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0594-5

Weitere Artikel der Ausgabe 6/2018

Clinical Pharmacokinetics 6/2018 Zur Ausgabe