Skip to main content
Erschienen in:

02.05.2023

A Pilot Human Cadaveric Study on Accuracy of the Augmented Reality Surgical Navigation System for Thoracolumbar Pedicle Screw Insertion Using a New Intraoperative Rapid Registration Method

verfasst von: Bing Cao, Bo Yuan, Guofeng Xu, Yin Zhao, Yanqing Sun, Zhiwei Wang, Shengyuan Zhou, Zheng Xu, Yao Wang, Xiongsheng Chen

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

To evaluate the feasibility and accuracy of AR-assisted pedicle screw placement using a new intraoperative rapid registration method of combining preoperative CT scanning and intraoperative C-arm 2D fluoroscopy in cadavers. Five cadavers with intact thoracolumbar spines were employed in this study. Intraoperative registration was performed using anteroposterior and lateral views of preoperative CT scanning and intraoperative 2D fluoroscopic images. Patient-specific targeting guides were used for pedicle screw placement from Th1-L5, totaling 166 screws. Instrumentation for each side was randomized (augmented reality surgical navigation (ARSN) vs. C-arm) with an equal distribution of 83 screws in each group. CT was performed to evaluate the accuracy of both techniques by assessing the screw positions and the deviations between the inserted screws and planned trajectories. Postoperative CT showed that 98.80% (82/83) screws in ARSN group and 72.29% (60/83) screws in C-arm group were within the 2-mm safe zone (p < 0.001). The mean time for instrumentation per level in ARSN group was significantly shorter than that in C-arm group (56.17 ± 3.33 s vs. 99.22 ± 9.03 s, p < 0.001). The overall intraoperative registration time was 17.2 ± 3.5 s per segment. AR-based navigation technology can provide surgeons with accurate guidance of pedicle screw insertion and save the operation time by using the intraoperative rapid registration method of combining preoperative CT scanning and intraoperative C-arm 2D fluoroscopy.
Literatur
1.
Zurück zum Zitat Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007. 32(3): E111–20. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007. 32(3): E111–20.
2.
Zurück zum Zitat Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020. 15(1): 174.CrossRefPubMedPubMedCentral Dennler C, Jaberg L, Spirig J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020. 15(1): 174.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Yao Y, Jiang X, Wei T, et al. A real-time 3D electromagnetic navigation system for percutaneous pedicle screw fixation in traumatic thoraco-lumbar fractures: implications for efficiency, fluoroscopic time, and accuracy compared with those of conventional fluoroscopic guidance. Eur Spine J. 2022. 31(1): 46-55.CrossRefPubMed Yao Y, Jiang X, Wei T, et al. A real-time 3D electromagnetic navigation system for percutaneous pedicle screw fixation in traumatic thoraco-lumbar fractures: implications for efficiency, fluoroscopic time, and accuracy compared with those of conventional fluoroscopic guidance. Eur Spine J. 2022. 31(1): 46-55.CrossRefPubMed
4.
Zurück zum Zitat Sun J, Wu D, Wang Q, Wei Y, Yuan F. Pedicle Screw Insertion: Is O-Arm-Based Navigation Superior to the Conventional Freehand Technique? A Systematic Review and Meta-Analysis. World Neurosurg. 2020. 144: e87-e99.CrossRefPubMed Sun J, Wu D, Wang Q, Wei Y, Yuan F. Pedicle Screw Insertion: Is O-Arm-Based Navigation Superior to the Conventional Freehand Technique? A Systematic Review and Meta-Analysis. World Neurosurg. 2020. 144: e87-e99.CrossRefPubMed
5.
Zurück zum Zitat Elmi-Terander A, Skulason H, Söderman M, et al. Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging: A Spine Cadaveric Feasibility and Accuracy Study. Spine (Phila Pa 1976). 2016. 41(21): E1303-E1311. Elmi-Terander A, Skulason H, Söderman M, et al. Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging: A Spine Cadaveric Feasibility and Accuracy Study. Spine (Phila Pa 1976). 2016. 41(21): E1303-E1311.
6.
Zurück zum Zitat Elmi-Terander A, Burström G, Nachabe R, et al. Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging: A First In-Human Prospective Cohort Study. Spine (Phila Pa 1976). 2019. 44(7): 517–525. Elmi-Terander A, Burström G, Nachabe R, et al. Pedicle Screw Placement Using Augmented Reality Surgical Navigation With Intraoperative 3D Imaging: A First In-Human Prospective Cohort Study. Spine (Phila Pa 1976). 2019. 44(7): 517–525.
7.
Zurück zum Zitat Jin M, Liu Z, Liu X, et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. 2016. 25(6): 1729-37.CrossRefPubMed Jin M, Liu Z, Liu X, et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique. Eur Spine J. 2016. 25(6): 1729-37.CrossRefPubMed
8.
Zurück zum Zitat Liu YJ, Tian W, Liu B, et al. Comparison of the clinical accuracy of cervical (C2-C7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional C-arm navigation. Chin Med J (Engl). 2010. 123(21): 2995-8.PubMed Liu YJ, Tian W, Liu B, et al. Comparison of the clinical accuracy of cervical (C2-C7) pedicle screw insertion assisted by fluoroscopy, computed tomography-based navigation, and intraoperative three-dimensional C-arm navigation. Chin Med J (Engl). 2010. 123(21): 2995-8.PubMed
9.
Zurück zum Zitat Su AW, McIntosh AL, Schueler BA, et al. How Does Patient Radiation Exposure Compare With Low-dose O-arm Versus Fluoroscopy for Pedicle Screw Placement in Idiopathic Scoliosis. J Pediatr Orthop. 2017. 37(3): 171-177.CrossRefPubMed Su AW, McIntosh AL, Schueler BA, et al. How Does Patient Radiation Exposure Compare With Low-dose O-arm Versus Fluoroscopy for Pedicle Screw Placement in Idiopathic Scoliosis. J Pediatr Orthop. 2017. 37(3): 171-177.CrossRefPubMed
10.
Zurück zum Zitat Balling H. Time Demand and Radiation Dose in 3D-Fluoroscopy-based Navigation-assisted 3D-Fluoroscopy-controlled Pedicle Screw Instrumentations. Spine (Phila Pa 1976). 2018. 43(9): E512-E519. Balling H. Time Demand and Radiation Dose in 3D-Fluoroscopy-based Navigation-assisted 3D-Fluoroscopy-controlled Pedicle Screw Instrumentations. Spine (Phila Pa 1976). 2018. 43(9): E512-E519.
11.
Zurück zum Zitat Burström G, Persson O, Edström E, Elmi-Terander A. Augmented reality navigation in spine surgery: a systematic review. Acta Neurochir (Wien). 2021. 163(3): 843-852.CrossRefPubMedPubMedCentral Burström G, Persson O, Edström E, Elmi-Terander A. Augmented reality navigation in spine surgery: a systematic review. Acta Neurochir (Wien). 2021. 163(3): 843-852.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Müller F, Roner S, Liebmann F, Spirig JM, Fürnstahl P, Farshad M. Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging. Spine J. 2020. 20(4): 621-628.CrossRefPubMed Müller F, Roner S, Liebmann F, Spirig JM, Fürnstahl P, Farshad M. Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging. Spine J. 2020. 20(4): 621-628.CrossRefPubMed
13.
Zurück zum Zitat Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019. 14(3): 525-535.CrossRefPubMed Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019. 14(3): 525-535.CrossRefPubMed
14.
Zurück zum Zitat Vaccaro AR, Harris JA, Hussain MM, et al. Assessment of Surgical Procedural Time, Pedicle Screw Accuracy, and Clinician Radiation Exposure of a Novel Robotic Navigation System Compared With Conventional Open and Percutaneous Freehand Techniques: A Cadaveric Investigation. Global Spine J. 2020. 10(7): 814-825.CrossRefPubMed Vaccaro AR, Harris JA, Hussain MM, et al. Assessment of Surgical Procedural Time, Pedicle Screw Accuracy, and Clinician Radiation Exposure of a Novel Robotic Navigation System Compared With Conventional Open and Percutaneous Freehand Techniques: A Cadaveric Investigation. Global Spine J. 2020. 10(7): 814-825.CrossRefPubMed
15.
Zurück zum Zitat Ammirati M, Salma A. Placement of thoracolumbar pedicle screws using O-arm-based navigation: technical note on controlling the operational accuracy of the navigation system. Neurosurg Rev. 2013. 36(1): 157–62; discussion 162. Ammirati M, Salma A. Placement of thoracolumbar pedicle screws using O-arm-based navigation: technical note on controlling the operational accuracy of the navigation system. Neurosurg Rev. 2013. 36(1): 157–62; discussion 162.
16.
Zurück zum Zitat Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017. 12(12): 2205-2215.CrossRefPubMed Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017. 12(12): 2205-2215.CrossRefPubMed
17.
Zurück zum Zitat Edgcumbe P, Pratt P, Yang GZ, Nguan C, Rohling R. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector. Med Image Anal. 2015. 25(1): 95-102.CrossRefPubMed Edgcumbe P, Pratt P, Yang GZ, Nguan C, Rohling R. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector. Med Image Anal. 2015. 25(1): 95-102.CrossRefPubMed
18.
Zurück zum Zitat Peh S, Chatterjea A, Pfarr J, et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J. 2020. 20(4): 629-637.CrossRefPubMed Peh S, Chatterjea A, Pfarr J, et al. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J. 2020. 20(4): 629-637.CrossRefPubMed
19.
Zurück zum Zitat Zhang W, Takigawa T, Wu Y, Sugimoto Y, Tanaka M, Ozaki T. Accuracy of pedicle screw insertion in posterior scoliosis surgery: a comparison between intraoperative navigation and preoperative navigation techniques. Eur Spine J. 2017. 26(6): 1756-1764.CrossRefPubMed Zhang W, Takigawa T, Wu Y, Sugimoto Y, Tanaka M, Ozaki T. Accuracy of pedicle screw insertion in posterior scoliosis surgery: a comparison between intraoperative navigation and preoperative navigation techniques. Eur Spine J. 2017. 26(6): 1756-1764.CrossRefPubMed
20.
Zurück zum Zitat Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I--Technical development and a test case result. Neurosurgery. 2006. 59(3): 641–50; discussion 641–50. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I--Technical development and a test case result. Neurosurgery. 2006. 59(3): 641–50; discussion 641–50.
21.
Zurück zum Zitat Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2--Evaluation of system accuracy. Neurosurgery. 2007. 60(2 Suppl 1): ONS129–39; discussion ONS139. Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2--Evaluation of system accuracy. Neurosurgery. 2007. 60(2 Suppl 1): ONS129–39; discussion ONS139.
22.
Zurück zum Zitat Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018. 70: 196-203.CrossRefPubMed Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018. 70: 196-203.CrossRefPubMed
23.
Zurück zum Zitat Jeswani S, Drazin D, Hsieh JC, et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus. 2014. 36(3): E6.CrossRefPubMed Jeswani S, Drazin D, Hsieh JC, et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus. 2014. 36(3): E6.CrossRefPubMed
24.
Zurück zum Zitat Saraf SK, Singh RP, Singh V, Varma A. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study. Indian J Orthop. 2013. 47(3): 238-43.CrossRefPubMedPubMedCentral Saraf SK, Singh RP, Singh V, Varma A. Pullout strength of misplaced pedicle screws in the thoracic and lumbar vertebrae - A cadaveric study. Indian J Orthop. 2013. 47(3): 238-43.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Pérez-Pachón L, Sharma P, Brech H, et al. Effect of marker position and size on the registration accuracy of HoloLens in a non-clinical setting with implications for high-precision surgical tasks. Int J Comput Assist Radiol Surg. 2021. 16(6): 955-966.CrossRefPubMedPubMedCentral Pérez-Pachón L, Sharma P, Brech H, et al. Effect of marker position and size on the registration accuracy of HoloLens in a non-clinical setting with implications for high-precision surgical tasks. Int J Comput Assist Radiol Surg. 2021. 16(6): 955-966.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Chien JC, Tsai YR, Wu CT, Lee JD. HoloLens-Based AR System with a Robust Point Set Registration Algorithm. Sensors (Basel). 2019. 19(16). Chien JC, Tsai YR, Wu CT, Lee JD. HoloLens-Based AR System with a Robust Point Set Registration Algorithm. Sensors (Basel). 2019. 19(16).
27.
Zurück zum Zitat Grubert J, Itoh Y, Moser K, Swan JE. A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays. IEEE Trans Vis Comput Graph. 2018. 24(9): 2649-2662.CrossRefPubMed Grubert J, Itoh Y, Moser K, Swan JE. A Survey of Calibration Methods for Optical See-Through Head-Mounted Displays. IEEE Trans Vis Comput Graph. 2018. 24(9): 2649-2662.CrossRefPubMed
28.
Zurück zum Zitat Sun Q, Mai Y, Yang R, Ji T, Jiang X, Chen X. Fast and accurate online calibration of optical see-through head-mounted display for AR-based surgical navigation using Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2020. 15(11): 1907-1919.CrossRefPubMed Sun Q, Mai Y, Yang R, Ji T, Jiang X, Chen X. Fast and accurate online calibration of optical see-through head-mounted display for AR-based surgical navigation using Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2020. 15(11): 1907-1919.CrossRefPubMed
29.
Zurück zum Zitat Hu X, Baena F, Cutolo F. Head-Mounted Augmented Reality Platform for Markerless Orthopaedic Navigation. IEEE J Biomed Health Inform. 2022. 26(2): 910-921.CrossRefPubMed Hu X, Baena F, Cutolo F. Head-Mounted Augmented Reality Platform for Markerless Orthopaedic Navigation. IEEE J Biomed Health Inform. 2022. 26(2): 910-921.CrossRefPubMed
30.
Zurück zum Zitat Xu B, Yang Z, Jiang S, Zhou Z, Jiang B, Yin S. Design and Validation of a Spinal Surgical Navigation System Based on Spatial Augmented Reality. Spine (Phila Pa 1976). 2020. 45(23): E1627-E1633. Xu B, Yang Z, Jiang S, Zhou Z, Jiang B, Yin S. Design and Validation of a Spinal Surgical Navigation System Based on Spatial Augmented Reality. Spine (Phila Pa 1976). 2020. 45(23): E1627-E1633.
31.
Zurück zum Zitat Verma SK, Singh PK, Agrawal D, et al. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg. 2016. 30(6): 658-661.CrossRefPubMed Verma SK, Singh PK, Agrawal D, et al. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg. 2016. 30(6): 658-661.CrossRefPubMed
32.
Zurück zum Zitat Liu H, Chen W, Liu T, Meng B, Yang H. Accuracy of pedicle screw placement based on preoperative computed tomography versus intraoperative data set acquisition for spinal navigation system. J Orthop Surg (Hong Kong). 2017. 25(2): 2309499017718901.CrossRefPubMed Liu H, Chen W, Liu T, Meng B, Yang H. Accuracy of pedicle screw placement based on preoperative computed tomography versus intraoperative data set acquisition for spinal navigation system. J Orthop Surg (Hong Kong). 2017. 25(2): 2309499017718901.CrossRefPubMed
33.
Zurück zum Zitat Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012. 37(25): E1580–7. Van de Kelft E, Costa F, Van der Planken D, Schils F. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012. 37(25): E1580–7.
34.
Zurück zum Zitat Chen L, Zhang F, Zhan W, Gan M, Sun L. Optimization of virtual and real registration technology based on augmented reality in a surgical navigation system. Biomed Eng Online. 2020. 19(1): 1.CrossRefPubMedPubMedCentral Chen L, Zhang F, Zhan W, Gan M, Sun L. Optimization of virtual and real registration technology based on augmented reality in a surgical navigation system. Biomed Eng Online. 2020. 19(1): 1.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Jud L, Fotouhi J, Andronic O, et al. Applicability of augmented reality in orthopedic surgery - A systematic review. BMC Musculoskelet Disord. 2020. 21(1): 103.CrossRefPubMedPubMedCentral Jud L, Fotouhi J, Andronic O, et al. Applicability of augmented reality in orthopedic surgery - A systematic review. BMC Musculoskelet Disord. 2020. 21(1): 103.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wu JR, Wang ML, Liu KC, Hu MH, Lee PY. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Programs Biomed. 2014. 113(3): 869-81.CrossRefPubMed Wu JR, Wang ML, Liu KC, Hu MH, Lee PY. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Programs Biomed. 2014. 113(3): 869-81.CrossRefPubMed
37.
Zurück zum Zitat Hussain I, Cosar M, Kirnaz S, et al. Evolving Navigation, Robotics, and Augmented Reality in Minimally Invasive Spine Surgery. Global Spine J. 2020. 10(2 Suppl): 22S-33S.CrossRefPubMedPubMedCentral Hussain I, Cosar M, Kirnaz S, et al. Evolving Navigation, Robotics, and Augmented Reality in Minimally Invasive Spine Surgery. Global Spine J. 2020. 10(2 Suppl): 22S-33S.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Burström G, Nachabe R, Persson O, Edström E, Elmi Terander A. Augmented and Virtual Reality Instrument Tracking for Minimally Invasive Spine Surgery: A Feasibility and Accuracy Study. Spine (Phila Pa 1976). 2019. 44(15): 1097–1104. Burström G, Nachabe R, Persson O, Edström E, Elmi Terander A. Augmented and Virtual Reality Instrument Tracking for Minimally Invasive Spine Surgery: A Feasibility and Accuracy Study. Spine (Phila Pa 1976). 2019. 44(15): 1097–1104.
39.
Zurück zum Zitat Auloge P, Cazzato RL, Ramamurthy N, et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J. 2020. 29(7): 1580-1589.CrossRefPubMed Auloge P, Cazzato RL, Ramamurthy N, et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial. Eur Spine J. 2020. 29(7): 1580-1589.CrossRefPubMed
40.
Zurück zum Zitat Molina CA, Dibble CF, Lo SL, Witham T, Sciubba DM. Augmented reality-mediated stereotactic navigation for execution of en bloc lumbar spondylectomy osteotomies. J Neurosurg Spine. 2021 : 1–6. Molina CA, Dibble CF, Lo SL, Witham T, Sciubba DM. Augmented reality-mediated stereotactic navigation for execution of en bloc lumbar spondylectomy osteotomies. J Neurosurg Spine. 2021 : 1–6.
41.
Zurück zum Zitat Spirig JM, Roner S, Liebmann F, Fürnstahl P, Farshad M. Augmented reality-navigated pedicle screw placement: a cadaveric pilot study. Eur Spine J. 2021. 30(12): 3731-3737.CrossRefPubMed Spirig JM, Roner S, Liebmann F, Fürnstahl P, Farshad M. Augmented reality-navigated pedicle screw placement: a cadaveric pilot study. Eur Spine J. 2021. 30(12): 3731-3737.CrossRefPubMed
42.
Zurück zum Zitat Molina CA, Sciubba DM, Greenberg JK, Khan M, Witham T. Clinical Accuracy, Technical Precision, and Workflow of the First in Human Use of an Augmented-Reality Head-Mounted Display Stereotactic Navigation System for Spine Surgery. Oper Neurosurg (Hagerstown). 2021. 20(3): 300-309.CrossRefPubMed Molina CA, Sciubba DM, Greenberg JK, Khan M, Witham T. Clinical Accuracy, Technical Precision, and Workflow of the First in Human Use of an Augmented-Reality Head-Mounted Display Stereotactic Navigation System for Spine Surgery. Oper Neurosurg (Hagerstown). 2021. 20(3): 300-309.CrossRefPubMed
Metadaten
Titel
A Pilot Human Cadaveric Study on Accuracy of the Augmented Reality Surgical Navigation System for Thoracolumbar Pedicle Screw Insertion Using a New Intraoperative Rapid Registration Method
verfasst von
Bing Cao
Bo Yuan
Guofeng Xu
Yin Zhao
Yanqing Sun
Zhiwei Wang
Shengyuan Zhou
Zheng Xu
Yao Wang
Xiongsheng Chen
Publikationsdatum
02.05.2023
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 4/2023
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00840-x

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.