Skip to main content
main-content
Erschienen in: Brain Structure and Function 8/2021

06.08.2021 | Original Article

A quantitative analysis of cerebellar anatomy in birds

verfasst von: Felipe Cunha, Cristian Gutiérrez-Ibáñez, Kelsey Racicot, Douglas R. Wylie, Andrew N. Iwaniuk

Erschienen in: Brain Structure and Function | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

The cerebellum is largely conserved in its circuitry, but varies greatly in size and shape across species. The extent to which differences in cerebellar morphology is driven by changes in neuron numbers, neuron sizes or both, remains largely unknown. To determine how species variation in cerebellum size and shape is reflective of neuron sizes and numbers requires the development of a suitable comparative data set and one that can effectively separate different neuronal populations. Here, we generated the largest comparative dataset to date on neuron numbers, sizes, and volumes of cortical layers and surface area of the cerebellum across 54 bird species. Across different cerebellar sizes, the cortical layers maintained relatively constant proportions to one another and variation in cerebellum size was largely due to neuron numbers rather than neuron sizes. However, the rate at which neuron numbers increased with cerebellum size varied across Purkinje cells, granule cells, and cerebellar nuclei neurons. We also examined the relationship among neuron numbers, cerebellar surface area and cerebellar folding. Our estimate of cerebellar folding, the midsagittal foliation index, was a poor predictor of surface area and number of Purkinje cells, but surface area was the best predictor of Purkinje cell numbers. Overall, this represents the first comprehensive, quantitative analysis of cerebellar anatomy in a comparative context of any vertebrate. The extent to which these relationships occur in other vertebrates requires a similar approach and would determine whether the same scaling principles apply throughout the evolution of the cerebellum.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comparative Neurol 326(4):549–560 CrossRef Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comparative Neurol 326(4):549–560 CrossRef
Zurück zum Zitat Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681 PubMedCrossRef Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681 PubMedCrossRef
Zurück zum Zitat Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP (2018) Cerebellar modules and their role as operational cerebellar processing units. Cerebellum 17(5):654–682 PubMedPubMedCentralCrossRef Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP (2018) Cerebellar modules and their role as operational cerebellar processing units. Cerebellum 17(5):654–682 PubMedPubMedCentralCrossRef
Zurück zum Zitat Arends J, Zeigler HP (1991) Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. J Comparative Neurol 306(2):245–272 CrossRef Arends J, Zeigler HP (1991) Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. J Comparative Neurol 306(2):245–272 CrossRef
Zurück zum Zitat Boire D, Baron G (1994) Allometric comparison of brain and main brain subdivisions in birds. J Brain Res 35(1):49–66 Boire D, Baron G (1994) Allometric comparison of brain and main brain subdivisions in birds. J Brain Res 35(1):49–66
Zurück zum Zitat Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304 CrossRef Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304 CrossRef
Zurück zum Zitat Chang W, Pedroni A, Hohendorf V, Giacomello S, Hibi M, Köster RW, Ampatzis K (2020) Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proc Natl Acad Sci 117(29):17330–17337 PubMedPubMedCentralCrossRef Chang W, Pedroni A, Hohendorf V, Giacomello S, Hibi M, Köster RW, Ampatzis K (2020) Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proc Natl Acad Sci 117(29):17330–17337 PubMedPubMedCentralCrossRef
Zurück zum Zitat Cooper A, Stanford I (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 527(2):291–304 PubMedPubMedCentralCrossRef Cooper A, Stanford I (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 527(2):291–304 PubMedPubMedCentralCrossRef
Zurück zum Zitat Corfield JR, Birkhead TR, Spottiswoode CN, Iwaniuk AN, Boogert NJ, Gutiérrez-Ibáñez C, Overington SE, Wylie DR, Lefebvre L (2013) Brain size and morphology of the brood-parasitic and cerophagous honeyguides (Aves: Piciformes). Brain Behav Evol 81(3):170–186 PubMedCrossRef Corfield JR, Birkhead TR, Spottiswoode CN, Iwaniuk AN, Boogert NJ, Gutiérrez-Ibáñez C, Overington SE, Wylie DR, Lefebvre L (2013) Brain size and morphology of the brood-parasitic and cerophagous honeyguides (Aves: Piciformes). Brain Behav Evol 81(3):170–186 PubMedCrossRef
Zurück zum Zitat Corfield JR, Price K, Iwaniuk AN, Gutiérrez-Ibáñez C, Birkhead T, Wylie DR (2015) Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Front Neuroanat 9:102 PubMedPubMedCentralCrossRef Corfield JR, Price K, Iwaniuk AN, Gutiérrez-Ibáñez C, Birkhead T, Wylie DR (2015) Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Front Neuroanat 9:102 PubMedPubMedCentralCrossRef
Zurück zum Zitat Craciun I, Gutierrez-Ibanez C, Chan AS, Luksch H, Wylie DR (2019) Secretagogin immunoreactivity reveals lugaro cells in the pigeon cerebellum. Cerebellum 18(3):544–555 PubMedCrossRef Craciun I, Gutierrez-Ibanez C, Chan AS, Luksch H, Wylie DR (2019) Secretagogin immunoreactivity reveals lugaro cells in the pigeon cerebellum. Cerebellum 18(3):544–555 PubMedCrossRef
Zurück zum Zitat Cunha F, Racicot K, Nahirney J, Heuston C, Wylie DR, Iwaniuk AN (2020) Allometric scaling rules of the cerebellum in Galliform birds. Brain Behav Evol 95(2):78–92 PubMedCrossRef Cunha F, Racicot K, Nahirney J, Heuston C, Wylie DR, Iwaniuk AN (2020) Allometric scaling rules of the cerebellum in Galliform birds. Brain Behav Evol 95(2):78–92 PubMedCrossRef
Zurück zum Zitat de Sousa AA, Proulx MJ (2014) What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Front Neuroanat 8:51 PubMedPubMedCentralCrossRef de Sousa AA, Proulx MJ (2014) What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives. Front Neuroanat 8:51 PubMedPubMedCentralCrossRef
Zurück zum Zitat Dieudonné S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510(3):845–866 PubMedPubMedCentralCrossRef Dieudonné S (1998) Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510(3):845–866 PubMedPubMedCentralCrossRef
Zurück zum Zitat El-Andari R, Cunha F, Tschirren B, Iwaniuk AN (2020) Selection for divergent reproductive investment affects neuron size and foliation in the cerebellum. Brain Behav Evol 95(2):69–77 PubMedCrossRef El-Andari R, Cunha F, Tschirren B, Iwaniuk AN (2020) Selection for divergent reproductive investment affects neuron size and foliation in the cerebellum. Brain Behav Evol 95(2):69–77 PubMedCrossRef
Zurück zum Zitat Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of neoaves: integration of molecular sequence data and fossils. Biol Let 2(4):543–547 CrossRef Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of neoaves: integration of molecular sequence data and fossils. Biol Let 2(4):543–547 CrossRef
Zurück zum Zitat Escalona P, McDonald W, Doraiswamy P, Boyko O, Husain M, Figiel G, Laskowitz D, Ellinwood E, Krishnan K (1991) In vivo stereological assessment of human cerebellar volume: effects of gender and age. Am J Neuroradiol 12(5):927–929 PubMedPubMedCentral Escalona P, McDonald W, Doraiswamy P, Boyko O, Husain M, Figiel G, Laskowitz D, Ellinwood E, Krishnan K (1991) In vivo stereological assessment of human cerebellar volume: effects of gender and age. Am J Neuroradiol 12(5):927–929 PubMedPubMedCentral
Zurück zum Zitat Fox CA (1959) The intermediate cells of Lugaro in the cerebellar cortex of the monkey. J Comparative Neurol 112(1):39–53 CrossRef Fox CA (1959) The intermediate cells of Lugaro in the cerebellar cortex of the monkey. J Comparative Neurol 112(1):39–53 CrossRef
Zurück zum Zitat Garamszegi LZ (2014) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg CrossRef Garamszegi LZ (2014) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg CrossRef
Zurück zum Zitat Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic-and cryosections. J Neurosci Methods 124(1):45–59 PubMedCrossRef Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic-and cryosections. J Neurosci Methods 124(1):45–59 PubMedCrossRef
Zurück zum Zitat Gundersen H, Jensen E, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193(3):199–211 PubMedCrossRef Gundersen H, Jensen E, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193(3):199–211 PubMedCrossRef
Zurück zum Zitat Gutiérrez-Ibáñez C, Iwaniuk AN, Wylie DR (2011) Relative size of auditory pathways in symmetrically and asymmetrically eared owls. Brain Behav Evol 78(4):286–301 PubMedCrossRef Gutiérrez-Ibáñez C, Iwaniuk AN, Wylie DR (2011) Relative size of auditory pathways in symmetrically and asymmetrically eared owls. Brain Behav Evol 78(4):286–301 PubMedCrossRef
Zurück zum Zitat Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Wylie DR (2013) Comparative study of visual pathways in owls (Aves: Strigiformes). Brain Behav Evol 81(1):27–39 PubMedCrossRef Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Wylie DR (2013) Comparative study of visual pathways in owls (Aves: Strigiformes). Brain Behav Evol 81(1):27–39 PubMedCrossRef
Zurück zum Zitat Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320(5884):1763–1768 PubMedCrossRef Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320(5884):1763–1768 PubMedCrossRef
Zurück zum Zitat Hall ZJ, Street SE, Healy SD (2013) The evolution of cerebellum structure correlates with nest complexity. Biol Let 9(6):20130687 CrossRef Hall ZJ, Street SE, Healy SD (2013) The evolution of cerebellum structure correlates with nest complexity. Biol Let 9(6):20130687 CrossRef
Zurück zum Zitat Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180(2):126–142 PubMedCrossRef Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180(2):126–142 PubMedCrossRef
Zurück zum Zitat Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25(10):2518–2521 PubMedPubMedCentralCrossRef Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25(10):2518–2521 PubMedPubMedCentralCrossRef
Zurück zum Zitat Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77 PubMedPubMedCentral Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77 PubMedPubMedCentral
Zurück zum Zitat Herculano-Houzel S, Catania K, Manger PR, Kaas JH (2015a) Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol 86(3–4):145–163 PubMedCrossRef Herculano-Houzel S, Catania K, Manger PR, Kaas JH (2015a) Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav Evol 86(3–4):145–163 PubMedCrossRef
Zurück zum Zitat Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA (2015b) When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front Neuroanat 9:64 PubMedPubMedCentral Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA (2015b) When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front Neuroanat 9:64 PubMedPubMedCentral
Zurück zum Zitat Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH (2015c) How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res 360(1):29–42 PubMedPubMedCentralCrossRef Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH (2015c) How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res 360(1):29–42 PubMedPubMedCentralCrossRef
Zurück zum Zitat Hofman MA (1985) Size and shape of the cerebral cortex in mammals (part 1 of 2). Brain Behav Evol 27(1):28–40 PubMedCrossRef Hofman MA (1985) Size and shape of the cerebral cortex in mammals (part 1 of 2). Brain Behav Evol 27(1):28–40 PubMedCrossRef
Zurück zum Zitat Inouye M, Oda SI (1980) Strain-specific variations in the folial pattern of the mouse cerebellum. J Comparative Neurol 190(2):357–362 CrossRef Inouye M, Oda SI (1980) Strain-specific variations in the folial pattern of the mouse cerebellum. J Comparative Neurol 190(2):357–362 CrossRef
Zurück zum Zitat Iwaniuk AN, Dean KM, Nelson JE (2005) Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain Behav Evol 65(1):40–59 PubMedCrossRef Iwaniuk AN, Dean KM, Nelson JE (2005) Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain Behav Evol 65(1):40–59 PubMedCrossRef
Zurück zum Zitat Iwaniuk AN, Lefebvre L, Wylie DR (2009) The comparative approach and brain–behaviour relationships: a tool for understanding tool use. Can J Exp Psychol/revue Canadienne De Psychologie Expérimentale 63(2):150 PubMedCrossRef Iwaniuk AN, Lefebvre L, Wylie DR (2009) The comparative approach and brain–behaviour relationships: a tool for understanding tool use. Can J Exp Psychol/revue Canadienne De Psychologie Expérimentale 63(2):150 PubMedCrossRef
Zurück zum Zitat Iwaniuk AN, Hurd PL, Wylie DR (2006) Comparative morphology of the avian cerebellum: I. Degree of foliation. Brain Behav Evol 68(1):45–62 PubMedCrossRef Iwaniuk AN, Hurd PL, Wylie DR (2006) Comparative morphology of the avian cerebellum: I. Degree of foliation. Brain Behav Evol 68(1):45–62 PubMedCrossRef
Zurück zum Zitat Iwaniuk AN, Hurd PL, Wylie DR (2007) Comparative morphology of the avian cerebellum: II. Size of folia. Brain Behav Evol 69(3):196–219 PubMedCrossRef Iwaniuk AN, Hurd PL, Wylie DR (2007) Comparative morphology of the avian cerebellum: II. Size of folia. Brain Behav Evol 69(3):196–219 PubMedCrossRef
Zurück zum Zitat Jardim-Messeder D, Lambert K, Noctor S, Pestana FM, de Castro Leal ME, Bertelsen MF, Alagaili AN, Mohammad OB, Manger PR, Herculano-Houzel S (2017) Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front Neuroanat 11:118 PubMedPubMedCentralCrossRef Jardim-Messeder D, Lambert K, Noctor S, Pestana FM, de Castro Leal ME, Bertelsen MF, Alagaili AN, Mohammad OB, Manger PR, Herculano-Houzel S (2017) Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front Neuroanat 11:118 PubMedPubMedCentralCrossRef
Zurück zum Zitat Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, Howard JT (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331 PubMedPubMedCentralCrossRef Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SY, Faircloth BC, Nabholz B, Howard JT (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331 PubMedPubMedCentralCrossRef
Zurück zum Zitat Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491(7424):444–448 PubMedCrossRef Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491(7424):444–448 PubMedCrossRef
Zurück zum Zitat Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157(1):115–124 PubMedCrossRef Lange W (1975) Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res 157(1):115–124 PubMedCrossRef
Zurück zum Zitat Lange W (1982) Regional differences in the cytoarchitecture of the cerebellar cortex. In: Palay SL, Chan-Palay V (eds) The cerebellum. New vistas. Exp Brain Res Suppl 6. Springer, Berlin, Heidelberg, pp 93–107 Lange W (1982) Regional differences in the cytoarchitecture of the cerebellar cortex. In: Palay SL, Chan-Palay V (eds) The cerebellum. New vistas. Exp Brain Res Suppl 6. Springer, Berlin, Heidelberg, pp 93–107
Zurück zum Zitat Larsell O (1967) The cerebellum: from myxinoids through birds. University of Minnesota Press, Minneapolis Larsell O (1967) The cerebellum: from myxinoids through birds. University of Minnesota Press, Minneapolis
Zurück zum Zitat MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44(4):401–429 PubMedCrossRef MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44(4):401–429 PubMedCrossRef
Zurück zum Zitat Macrì S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 10(1):1–16 CrossRef Macrì S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 10(1):1–16 CrossRef
Zurück zum Zitat Meitzen J, Thompson CK (2008) Seasonal-like growth and regression of the avian song control system: neural and behavioral plasticity in adult male Gambel’s white-crowned sparrows. Gen Comp Endocrinol 157(3):259–265 PubMedPubMedCentralCrossRef Meitzen J, Thompson CK (2008) Seasonal-like growth and regression of the avian song control system: neural and behavioral plasticity in adult male Gambel’s white-crowned sparrows. Gen Comp Endocrinol 157(3):259–265 PubMedPubMedCentralCrossRef
Zurück zum Zitat Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comparative Neurol 339(2):174–180 CrossRef Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comparative Neurol 339(2):174–180 CrossRef
Zurück zum Zitat Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211 PubMedCrossRef Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211 PubMedCrossRef
Zurück zum Zitat Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN (2017) Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks ( Gallus domesticus). J Neurosci Methods 287:39–46 PubMedCrossRef Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN (2017) Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks ( Gallus domesticus). J Neurosci Methods 287:39–46 PubMedCrossRef
Zurück zum Zitat Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci 113(26):7255–7260 PubMedPubMedCentralCrossRef Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci 113(26):7255–7260 PubMedPubMedCentralCrossRef
Zurück zum Zitat Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) The caper package: comparative analysis of phylogenetics and evolution in R. R Package Vers 5(2):1–36 Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) The caper package: comparative analysis of phylogenetics and evolution in R. R Package Vers 5(2):1–36
Zurück zum Zitat Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48(3):612–622 CrossRef Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48(3):612–622 CrossRef
Zurück zum Zitat Pillay P, Manger PR (2007) Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci 25(9):2705–2712 PubMedCrossRef Pillay P, Manger PR (2007) Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci 25(9):2705–2712 PubMedCrossRef
Zurück zum Zitat Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2006) nlme: linear and nonlinear mixed effects models. R Package Vers 3(4):109 Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2006) nlme: linear and nonlinear mixed effects models. R Package Vers 3(4):109
Zurück zum Zitat Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526(7574):569–573 PubMedCrossRef Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526(7574):569–573 PubMedCrossRef
Zurück zum Zitat Puzdrowski RL, Leonard RB (1992) Variations in cerebellar morphology of the Atlantic stingray. Dasyatis Sabina Neurosci Lett 135(2):196–200 PubMedCrossRef Puzdrowski RL, Leonard RB (1992) Variations in cerebellar morphology of the Atlantic stingray. Dasyatis Sabina Neurosci Lett 135(2):196–200 PubMedCrossRef
Zurück zum Zitat R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Zurück zum Zitat Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB (2020) Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution. Cereb Cortex 30(10):5604–5615 PubMedCrossRefPubMedCentral Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB (2020) Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution. Cereb Cortex 30(10):5604–5615 PubMedCrossRefPubMedCentral
Zurück zum Zitat Smaers JB, Turner AH, Gómez-Robles A, Sherwood CC (2018) A cerebellar substrate for cognition evolved multiple times independently in mammals. Elife 7:e35696 PubMedPubMedCentralCrossRef Smaers JB, Turner AH, Gómez-Robles A, Sherwood CC (2018) A cerebellar substrate for cognition evolved multiple times independently in mammals. Elife 7:e35696 PubMedPubMedCentralCrossRef
Zurück zum Zitat Smaers JB, Vanier DR (2019) Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 118:292–305 PubMedCrossRef Smaers JB, Vanier DR (2019) Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex 118:292–305 PubMedCrossRef
Zurück zum Zitat Smith GT, Brenowitz EA, Beecher MD, Wingfield JC (1997) Seasonal changes in testosterone, neural attributes of song control nuclei, and song structure in wild songbirds. J Neurosci 17(15):6001–6010 PubMedPubMedCentralCrossRef Smith GT, Brenowitz EA, Beecher MD, Wingfield JC (1997) Seasonal changes in testosterone, neural attributes of song control nuclei, and song structure in wild songbirds. J Neurosci 17(15):6001–6010 PubMedPubMedCentralCrossRef
Zurück zum Zitat Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6(3):168–176 PubMedCrossRef Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6(3):168–176 PubMedCrossRef
Zurück zum Zitat Teeter CM, Stevens CF (2011) A general principle of neural arbor branch density. Curr Biol 21(24):2105–2108 PubMedCrossRef Teeter CM, Stevens CF (2011) A general principle of neural arbor branch density. Curr Biol 21(24):2105–2108 PubMedCrossRef
Zurück zum Zitat Vanier DR, Sherwood CC, Smaers JB (2019) Distinct patterns of hippocampal and neocortical evolution in primates. Brain Behav Evol 93(4):171–181 PubMedCrossRef Vanier DR, Sherwood CC, Smaers JB (2019) Distinct patterns of hippocampal and neocortical evolution in primates. Brain Behav Evol 93(4):171–181 PubMedCrossRef
Zurück zum Zitat Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69(4):280–300 PubMedCrossRef Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69(4):280–300 PubMedCrossRef
Zurück zum Zitat Yopak KE, Pakan J, Wylie D (2017) The cerebellum of nonmammalian vertebrates. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Academic Press, Oxford, pp 373–386 Yopak KE, Pakan J, Wylie D (2017) The cerebellum of nonmammalian vertebrates. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Academic Press, Oxford, pp 373–386
Zurück zum Zitat Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrification in the cerebral cortex of primates. Brain Behav Evol 34(3):143–150 PubMedCrossRef Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrification in the cerebral cortex of primates. Brain Behav Evol 34(3):143–150 PubMedCrossRef
Metadaten
Titel
A quantitative analysis of cerebellar anatomy in birds
verfasst von
Felipe Cunha
Cristian Gutiérrez-Ibáñez
Kelsey Racicot
Douglas R. Wylie
Andrew N. Iwaniuk
Publikationsdatum
06.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02352-2

Weitere Artikel der Ausgabe 8/2021

Brain Structure and Function 8/2021 Zur Ausgabe

Neu im Fachgebiet Neurologie

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Neurologie und bleiben Sie gut informiert – ganz bequem per eMail.