Skip to main content
main-content

12.09.2019 | Original Article

A reliable method to determine which candidate chemotherapeutic drugs effectively inhibit tumor growth in patient-derived xenografts (PDX) in single mouse trials

Zeitschrift:
Cancer Chemotherapy and Pharmacology
Autoren:
Derek Gordon, David E. Axelrod
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00280-019-03942-y) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

We report on a statistical method for grouping anti-cancer drugs (GRAD) in single mouse trials (SMT). The method assigns candidate drugs into groups that inhibit or do not inhibit tumor growth in patient-derived xenografts (PDX). It determines the statistical significance of the group assignments without replicate trials of each drug.

Methods

The GRAD method applies a longitudinal finite mixture model, implemented in the statistical package PROC TRAJ, to analyze a mixture of tumor growth curves for portions of the same tumor in different mice, each single mouse exposed to a different drug. Each drug is classified into an inhibitory or non-inhibitory group. There are several advantages to the GRAD method for SMT. It determines that probability that the grouping is correct, uses the entire longitudinal tumor growth curve data for each drug treatment, can fit different shape growth curves, accounts for missing growth curve data, and accommodates growth curves of different time periods.

Results

We analyzed data for 22 drugs for 18 human colorectal tumors provided by researchers in a previous publication. The GRAD method identified 18 drugs that were inhibitory against at least one tumor, and 10 tumors for which there was at least one inhibitory drug. Analysis of simulated data indicated that the GRAD method has a sensitivity of 84% and a specificity of 98%.

Conclusion

A statistical method, GRAD, can group anti-cancer drugs into those that are inhibitory and those that are non-inhibitory in single mouse trials and provide probabilities that the grouping is correct.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Supplementary material 1 (DOCX 38 kb)
280_2019_3942_MOESM1_ESM.docx
Literatur
Über diesen Artikel
  1. Sie können e.Med Innere Medizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise