Skip to main content
Erschienen in: Calcified Tissue International 5/2011

01.05.2011 | Original Research

A Scaffold-Free Multicellular Three-Dimensional In Vitro Model of Osteogenesis

verfasst von: Umut A. Gurkan, Vipuil Kishore, Keith W. Condon, Teresita M. Bellido, Ozan Akkus

Erschienen in: Calcified Tissue International | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

In vitro models of osteogenesis are essential for investigating bone biology and the effects of pharmaceutical, chemical, and physical cues on bone formation. Osteogenesis takes place in a complex three-dimensional (3D) environment with cells from both mesenchymal and hematopoietic origins. Existing in vitro models of osteogenesis include two-dimensional (2D) single type cell monolayers and 3D cultures. However, an in vitro scaffold-free multicellular 3D model of osteogenesis is missing. We hypothesized that the self-inductive ossification capacity of bone marrow tissue can be harnessed in vitro and employed as a scaffold-free multicellular 3D model of osteogenesis. Therefore, rat bone marrow tissue was cultured for 28 days in three settings: 2D monolayer, 3D homogenized pellet, and 3D organotypic explant. The ossification potential of marrow in each condition was quantified by micro-computed tomography. The 3D organotypic marrow explant culture resulted in the greatest level of ossification with plate-like bone formations (up to 5 mm in diameter and 0.24 mm in thickness). To evaluate the mimicry of the organotypic marrow explants to newly forming native bone tissue, detailed compositional and morphological analyses were performed, including characterization of the ossified matrix by histochemistry, immunohistochemistry, Raman microspectroscopy, energy dispersive X-ray spectroscopy, backscattered electron microscopy, and micromechanical tests. The results indicated that the 3D organotypic marrow explant culture model mimics newly forming native bone tissue in terms of the characteristics studied. Therefore, this platform holds significant potential to be used as a model of osteogenesis, offering an alternative to in vitro monolayer cultures and in vivo animal models.
Literatur
1.
Zurück zum Zitat Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884PubMedCrossRef Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884PubMedCrossRef
2.
Zurück zum Zitat Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815PubMedCrossRef Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14:1805–1815PubMedCrossRef
3.
Zurück zum Zitat Gurkan UA, Gargac J, Akkus O (2010) The sequential production profiles of growth factors and their relations to bone volume in ossifying bone marrow explants. Tissue Eng A 16:2295–2306CrossRef Gurkan UA, Gargac J, Akkus O (2010) The sequential production profiles of growth factors and their relations to bone volume in ossifying bone marrow explants. Tissue Eng A 16:2295–2306CrossRef
4.
Zurück zum Zitat Palomares KTS, Gleason RE, Mason ZD, Cullinane DM, Einhorn TA, Gerstenfeld LC, Morgan EF (2009) Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res 27:1123–1132PubMedCrossRef Palomares KTS, Gleason RE, Mason ZD, Cullinane DM, Einhorn TA, Gerstenfeld LC, Morgan EF (2009) Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res 27:1123–1132PubMedCrossRef
5.
Zurück zum Zitat Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991PubMedCrossRef Gurkan UA, Akkus O (2008) The mechanical environment of bone marrow: a review. Ann Biomed Eng 36:1978–1991PubMedCrossRef
6.
Zurück zum Zitat Gurkan UA, Krueger A, Akkus O (2010) Ossifying bone marrow explant culture as a three-dimensional mechanoresponsive in vitro model of osteogenesis. Tissue Eng A 17(3–4):417–428CrossRef Gurkan UA, Krueger A, Akkus O (2010) Ossifying bone marrow explant culture as a three-dimensional mechanoresponsive in vitro model of osteogenesis. Tissue Eng A 17(3–4):417–428CrossRef
7.
Zurück zum Zitat Jung YG, Song JH, Shiozawa Y, Wang JC, Wang Z, Williams B, Havens A, Schneider A, Ge CX, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS (2008) Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26:2042–2051PubMedCrossRef Jung YG, Song JH, Shiozawa Y, Wang JC, Wang Z, Williams B, Havens A, Schneider A, Ge CX, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS (2008) Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26:2042–2051PubMedCrossRef
8.
Zurück zum Zitat Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. Plos One 3:e3922PubMedCrossRef Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. Plos One 3:e3922PubMedCrossRef
9.
Zurück zum Zitat Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24:759–764PubMedCrossRef Wu JY, Scadden DT, Kronenberg HM (2009) Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res 24:759–764PubMedCrossRef
10.
Zurück zum Zitat Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473:193–200PubMedCrossRef Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473:193–200PubMedCrossRef
11.
Zurück zum Zitat Eipers PG, Kale S, Taichman RS, Pipia GG, Swords NA, Mann KG, Long MW (2000) Bone marrow accessory cells regulate human bone precursor cell development. Exp Hematol 28:815–825PubMedCrossRef Eipers PG, Kale S, Taichman RS, Pipia GG, Swords NA, Mann KG, Long MW (2000) Bone marrow accessory cells regulate human bone precursor cell development. Exp Hematol 28:815–825PubMedCrossRef
12.
Zurück zum Zitat van den Dolder J, Jansen JA (2007) Enrichment of osteogenic cell populations from rat bone marrow stroma. Biomaterials 28:249–255PubMedCrossRef van den Dolder J, Jansen JA (2007) Enrichment of osteogenic cell populations from rat bone marrow stroma. Biomaterials 28:249–255PubMedCrossRef
13.
Zurück zum Zitat Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in in vitro bone marrow cultures. Blood 87:518–524PubMed Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in in vitro bone marrow cultures. Blood 87:518–524PubMed
14.
Zurück zum Zitat Taichman RS, Reilly MJ, Verma RS, Ehrenman K, Emerson SG (2001) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112:438–448PubMedCrossRef Taichman RS, Reilly MJ, Verma RS, Ehrenman K, Emerson SG (2001) Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112:438–448PubMedCrossRef
15.
Zurück zum Zitat de Barros APDN, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MID (2010) Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. Plos One 5:e9093PubMedCrossRef de Barros APDN, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MID (2010) Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. Plos One 5:e9093PubMedCrossRef
16.
Zurück zum Zitat Chitteti BR, Cheng Y-H, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, Kacena MA, Srour EF (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115:3239–3248PubMedCrossRef Chitteti BR, Cheng Y-H, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N, Kacena MA, Srour EF (2010) Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 115:3239–3248PubMedCrossRef
17.
Zurück zum Zitat Yamamoto N, Furuya K, Hanada K (2002) Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: model for in vitro bone formation. Biol Pharm Bull 25:509–515PubMedCrossRef Yamamoto N, Furuya K, Hanada K (2002) Progressive development of the osteoblast phenotype during differentiation of osteoprogenitor cells derived from fetal rat calvaria: model for in vitro bone formation. Biol Pharm Bull 25:509–515PubMedCrossRef
18.
Zurück zum Zitat Huang ZN, Nelson ER, Smith RL, Goodman SB (2007) The sequential expression profiles of growth factors from osteroprogenitors to osteoblasts in vitro. Tissue Eng 13:2311–2320PubMedCrossRef Huang ZN, Nelson ER, Smith RL, Goodman SB (2007) The sequential expression profiles of growth factors from osteroprogenitors to osteoblasts in vitro. Tissue Eng 13:2311–2320PubMedCrossRef
19.
Zurück zum Zitat Beresford JN, Graves SE, Smoothy CA (1993) Formation of mineralized nodules by bone derived cells in vitro—a model of bone formation. Am J Med Genet 45:163–178PubMedCrossRef Beresford JN, Graves SE, Smoothy CA (1993) Formation of mineralized nodules by bone derived cells in vitro—a model of bone formation. Am J Med Genet 45:163–178PubMedCrossRef
20.
Zurück zum Zitat Malaval L, Modrowski D, Gupta AK, Aubin JE (1994) Cellular expression of bone-related proteins during in-vitro osteogenesis in rat bone-marrow stromal cell cultures. J Cell Physiol 158:555–572PubMedCrossRef Malaval L, Modrowski D, Gupta AK, Aubin JE (1994) Cellular expression of bone-related proteins during in-vitro osteogenesis in rat bone-marrow stromal cell cultures. J Cell Physiol 158:555–572PubMedCrossRef
21.
Zurück zum Zitat Bodine PVN, Komm BS (2002) Tissue culture models for studies of hormone and vitamin action in bone cells. Vitam Horm 64:101–151PubMedCrossRef Bodine PVN, Komm BS (2002) Tissue culture models for studies of hormone and vitamin action in bone cells. Vitam Horm 64:101–151PubMedCrossRef
22.
Zurück zum Zitat Tao H, Minkin C (1994) The effects of 1,25-dihydroxyvitamin D3 on osteoclast formation in fetal mouse metatarsal organ cultures. Bone 15:217–223PubMedCrossRef Tao H, Minkin C (1994) The effects of 1,25-dihydroxyvitamin D3 on osteoclast formation in fetal mouse metatarsal organ cultures. Bone 15:217–223PubMedCrossRef
23.
Zurück zum Zitat Gupta AK, Eshraghi Y, Gliniak C, Gosain AK (2010) Nonviral transfection of mouse calvarial organ in vitro using accell-modified siRNA. Plast Reconstr Surg 125:494–501PubMedCrossRef Gupta AK, Eshraghi Y, Gliniak C, Gosain AK (2010) Nonviral transfection of mouse calvarial organ in vitro using accell-modified siRNA. Plast Reconstr Surg 125:494–501PubMedCrossRef
24.
Zurück zum Zitat Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMedCrossRef Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMedCrossRef
25.
Zurück zum Zitat Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84PubMedCrossRef Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84PubMedCrossRef
26.
Zurück zum Zitat Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44:269–278PubMed Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44:269–278PubMed
27.
Zurück zum Zitat Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131s–134sPubMedCrossRef Muraglia A, Martin I, Cancedda R, Quarto R (1998) A nude mouse model for human bone formation in unloaded conditions. Bone 22:131s–134sPubMedCrossRef
28.
Zurück zum Zitat Histing T, Garcia P, Matthys R, Leidinger M, Holstein JH, Kristen A, Pohlemann T, Menger MD (2010) An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. J Orthop Res 28:397–402PubMed Histing T, Garcia P, Matthys R, Leidinger M, Holstein JH, Kristen A, Pohlemann T, Menger MD (2010) An internal locking plate to study intramembranous bone healing in a mouse femur fracture model. J Orthop Res 28:397–402PubMed
29.
Zurück zum Zitat Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20:1091–1098PubMedCrossRef Thompson Z, Miclau T, Hu D, Helms JA (2002) A model for intramembranous ossification during fracture healing. J Orthop Res 20:1091–1098PubMedCrossRef
30.
Zurück zum Zitat Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405–412PubMedCrossRef Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405–412PubMedCrossRef
31.
Zurück zum Zitat Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610PubMedCrossRef Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610PubMedCrossRef
32.
Zurück zum Zitat Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedCrossRef Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedCrossRef
33.
Zurück zum Zitat Mazzoleni G, Di Lorenzo D, Steimberg N (2009) Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 4:13–22PubMedCrossRef Mazzoleni G, Di Lorenzo D, Steimberg N (2009) Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 4:13–22PubMedCrossRef
34.
Zurück zum Zitat Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285PubMedCrossRef Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285PubMedCrossRef
35.
Zurück zum Zitat Petersen MC, Lazar J, Jacob HJ, Wakatsuki T (2007) Tissue engineering: a new frontier in physiological genomics. Physiol Genom 32:28–32CrossRef Petersen MC, Lazar J, Jacob HJ, Wakatsuki T (2007) Tissue engineering: a new frontier in physiological genomics. Physiol Genom 32:28–32CrossRef
36.
Zurück zum Zitat Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56PubMedCrossRef Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56PubMedCrossRef
37.
Zurück zum Zitat Luria EA, Owen ME, Friedenstein AJ, Morris JF, Kuznetsow SA (1987) Bone formation in organ cultures of bone marrow. Cell Tissue Res 248:449–454PubMedCrossRef Luria EA, Owen ME, Friedenstein AJ, Morris JF, Kuznetsow SA (1987) Bone formation in organ cultures of bone marrow. Cell Tissue Res 248:449–454PubMedCrossRef
38.
Zurück zum Zitat Beresford JN, Joyner CJ, Devlin C, Triffitt JT (1994) The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in-vitro. Arch Oral Biol 39:941–947PubMedCrossRef Beresford JN, Joyner CJ, Devlin C, Triffitt JT (1994) The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in-vitro. Arch Oral Biol 39:941–947PubMedCrossRef
39.
Zurück zum Zitat Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312PubMedCrossRef
40.
Zurück zum Zitat Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, Gerstenfeld LC (2009) Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44:335–344PubMedCrossRef Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, Gerstenfeld LC (2009) Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44:335–344PubMedCrossRef
41.
Zurück zum Zitat Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66PubMedCrossRef Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66PubMedCrossRef
42.
Zurück zum Zitat Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950PubMedCrossRef Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950PubMedCrossRef
43.
Zurück zum Zitat Majewski M, Ochsner PE, Liu F, Fluckiger R, Evans CH (2009) Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med 37:2117–2125PubMedCrossRef Majewski M, Ochsner PE, Liu F, Fluckiger R, Evans CH (2009) Accelerated healing of the rat Achilles tendon in response to autologous conditioned serum. Am J Sports Med 37:2117–2125PubMedCrossRef
44.
Zurück zum Zitat Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ (1996) Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res 14:573–581PubMedCrossRef Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ (1996) Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res 14:573–581PubMedCrossRef
45.
Zurück zum Zitat Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583PubMedCrossRef Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583PubMedCrossRef
46.
Zurück zum Zitat O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. Plos One 3:e2942PubMedCrossRef O’Brien CA, Plotkin LI, Galli C, Goellner JJ, Gortazar AR, Allen MR, Robling AG, Bouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T (2008) Control of bone mass and remodeling by PTH receptor signaling in osteocytes. Plos One 3:e2942PubMedCrossRef
47.
Zurück zum Zitat Ralph SJ, Thomas ML, Morton CC, Trowbridge IS (1987) Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J 6:1251–1257PubMed Ralph SJ, Thomas ML, Morton CC, Trowbridge IS (1987) Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J 6:1251–1257PubMed
48.
Zurück zum Zitat De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270PubMedCrossRef De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270PubMedCrossRef
49.
Zurück zum Zitat Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82PubMedCrossRef Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82PubMedCrossRef
50.
Zurück zum Zitat Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The Stro-1+ fraction of adult human bone-marrow contains the osteogenic precursors. Blood 84:4164–4173PubMed Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The Stro-1+ fraction of adult human bone-marrow contains the osteogenic precursors. Blood 84:4164–4173PubMed
51.
Zurück zum Zitat Simmons PJ, Torokstorb B (1991) Identification of stromal cell precursors in human bone-marrow by a novel monoclonal-antibody, Stro-1. Blood 78:55–62PubMed Simmons PJ, Torokstorb B (1991) Identification of stromal cell precursors in human bone-marrow by a novel monoclonal-antibody, Stro-1. Blood 78:55–62PubMed
52.
Zurück zum Zitat Byers RJ, Brown J, Brandwood C, Wood P, Staley W, Hainey L, Freemont AJ, Hoyland JA (1999) Osteoblastic differentiation and mRNA analysis of STRO-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR. J Pathol 187:374–381PubMedCrossRef Byers RJ, Brown J, Brandwood C, Wood P, Staley W, Hainey L, Freemont AJ, Hoyland JA (1999) Osteoblastic differentiation and mRNA analysis of STRO-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR. J Pathol 187:374–381PubMedCrossRef
53.
Zurück zum Zitat Wang CY, Wang Y, Huffman NT, Cui CY, Yao XM, Midura S, Midura RJ, Gorski JP (2009) Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284:7100–7113PubMedCrossRef Wang CY, Wang Y, Huffman NT, Cui CY, Yao XM, Midura S, Midura RJ, Gorski JP (2009) Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284:7100–7113PubMedCrossRef
54.
Zurück zum Zitat Nandagawali ST, Yerramshetty JS, Akkus O (2007) Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations. J Biomed Mater Res A 82:611–617PubMed Nandagawali ST, Yerramshetty JS, Akkus O (2007) Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations. J Biomed Mater Res A 82:611–617PubMed
55.
Zurück zum Zitat Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482PubMedCrossRef Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482PubMedCrossRef
56.
Zurück zum Zitat Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:1236–1243PubMedCrossRef Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:1236–1243PubMedCrossRef
57.
Zurück zum Zitat Donnelly E, Boskey AL, Baker SP, van der Meulen MCH (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92A:1048–1056 Donnelly E, Boskey AL, Baker SP, van der Meulen MCH (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92A:1048–1056
58.
Zurück zum Zitat Frost HM, Jee WSS (1992) On the rat model of human osteopenias and osteoporosis. Bone Miner 18:227–236PubMedCrossRef Frost HM, Jee WSS (1992) On the rat model of human osteopenias and osteoporosis. Bone Miner 18:227–236PubMedCrossRef
59.
Zurück zum Zitat Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80:323–336PubMedCrossRef Rohde M, Mayer H (2007) Exocytotic process as a novel model for mineralization by osteoblasts in vitro and in vivo determined by electron microscopic analysis. Calcif Tissue Int 80:323–336PubMedCrossRef
60.
Zurück zum Zitat Tzaphlidou M, Zaichick V (2004) Sex and age related Ca/P ratio in cortical bone of iliac crest of healthy humans. J Radioanal Nuclear Chem 259:347–349CrossRef Tzaphlidou M, Zaichick V (2004) Sex and age related Ca/P ratio in cortical bone of iliac crest of healthy humans. J Radioanal Nuclear Chem 259:347–349CrossRef
61.
Zurück zum Zitat Weaver JK (1966) Microscopic hardness of bone. J Bone Joint Surg Am 48:273–288PubMed Weaver JK (1966) Microscopic hardness of bone. J Bone Joint Surg Am 48:273–288PubMed
62.
Zurück zum Zitat Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. J Biomech 40:3267–3270PubMedCrossRef Dall’Ara E, Ohman C, Baleani M, Viceconti M (2007) The effect of tissue condition and applied load on Vickers hardness of human trabecular bone. J Biomech 40:3267–3270PubMedCrossRef
63.
Zurück zum Zitat Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMedCrossRef
65.
Zurück zum Zitat Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109:277–282PubMed Ohishi M, Schipani E (2010) Bone marrow mesenchymal stem cells. J Cell Biochem 109:277–282PubMed
66.
Zurück zum Zitat Wan C, He Q, McCaigue M, Marsh D, Li G (2006) Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). J Orthop Res 24:21–28PubMedCrossRef Wan C, He Q, McCaigue M, Marsh D, Li G (2006) Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). J Orthop Res 24:21–28PubMedCrossRef
67.
Zurück zum Zitat Satomura K, Nagayama M (1991) Ultrastructure of mineralized nodules formed in rat bone-marrow stromal cell culture in vitro. Acta Anat 142:97–104PubMedCrossRef Satomura K, Nagayama M (1991) Ultrastructure of mineralized nodules formed in rat bone-marrow stromal cell culture in vitro. Acta Anat 142:97–104PubMedCrossRef
68.
Zurück zum Zitat Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239PubMedCrossRef Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239PubMedCrossRef
69.
Zurück zum Zitat Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898PubMedCrossRef Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898PubMedCrossRef
70.
Zurück zum Zitat Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125PubMedCrossRef Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125PubMedCrossRef
71.
Zurück zum Zitat Friedenstein AJ, Petrakov KV, Kuroleso AI, Frolova GP (1968) Heterotopic transplants of bone marrow—analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedCrossRef Friedenstein AJ, Petrakov KV, Kuroleso AI, Frolova GP (1968) Heterotopic transplants of bone marrow—analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedCrossRef
72.
Zurück zum Zitat Schoeters GER, Desaintgeorges L, Vandenheuvel R, Vanderborght O (1988) Mineralization of adult mouse bone-marrow in vitro. Cell Tissue Kinet 21:363–374PubMed Schoeters GER, Desaintgeorges L, Vandenheuvel R, Vanderborght O (1988) Mineralization of adult mouse bone-marrow in vitro. Cell Tissue Kinet 21:363–374PubMed
73.
Zurück zum Zitat Carter DH, Sloan P, Aaron JE (1991) Immunolocalization of collagen type I and type III, tenascin, and fibronectin in intramembranous bone. J Histochem Cytochem 39:599–606PubMedCrossRef Carter DH, Sloan P, Aaron JE (1991) Immunolocalization of collagen type I and type III, tenascin, and fibronectin in intramembranous bone. J Histochem Cytochem 39:599–606PubMedCrossRef
74.
75.
Zurück zum Zitat Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66PubMedCrossRef Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66PubMedCrossRef
76.
Zurück zum Zitat Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485PubMedCrossRef Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485PubMedCrossRef
77.
Zurück zum Zitat Shorey S, Heersche JNM, Manolson MF (2004) The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone 35:909–917PubMedCrossRef Shorey S, Heersche JNM, Manolson MF (2004) The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula. Bone 35:909–917PubMedCrossRef
78.
79.
Zurück zum Zitat Fujii T, Ueno T, Kagawa T, Sakata Y, Sugahara T (2006) Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria. Microsc Res Tech 69:580–584PubMedCrossRef Fujii T, Ueno T, Kagawa T, Sakata Y, Sugahara T (2006) Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria. Microsc Res Tech 69:580–584PubMedCrossRef
80.
Zurück zum Zitat Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282PubMedCrossRef Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282PubMedCrossRef
81.
Zurück zum Zitat Friedenstein AJ, Ivanovsmolenski AA, Chajlakjan RK, Gorskaya UF, Kuralesova AI, Latzinik NW, Gerasimow UW (1978) Origin of bone-marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol 6:440–444PubMed Friedenstein AJ, Ivanovsmolenski AA, Chajlakjan RK, Gorskaya UF, Kuralesova AI, Latzinik NW, Gerasimow UW (1978) Origin of bone-marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol 6:440–444PubMed
82.
Zurück zum Zitat Giese K, Kaufmann J, Pronk GJ, Klippel A (2002) Unravelling novel intracellular pathways in cell-based assays. Drug Discov Today 7:179–186PubMedCrossRef Giese K, Kaufmann J, Pronk GJ, Klippel A (2002) Unravelling novel intracellular pathways in cell-based assays. Drug Discov Today 7:179–186PubMedCrossRef
Metadaten
Titel
A Scaffold-Free Multicellular Three-Dimensional In Vitro Model of Osteogenesis
verfasst von
Umut A. Gurkan
Vipuil Kishore
Keith W. Condon
Teresita M. Bellido
Ozan Akkus
Publikationsdatum
01.05.2011
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 5/2011
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-011-9467-3

Weitere Artikel der Ausgabe 5/2011

Calcified Tissue International 5/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.