Skip to main content
Erschienen in: Brain Topography 4/2019

02.06.2016 | Original Paper

A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies

verfasst von: Stefan Haufe, Arne Ewald

Erschienen in: Brain Topography | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Due to its high temporal resolution, electroencephalography (EEG) is widely used to study functional and effective brain connectivity. Yet, there is currently a mismatch between the vastness of studies conducted and the degree to which the employed analyses are theoretically understood and empirically validated. We here provide a simulation framework that enables researchers to test their analysis pipelines on realistic pseudo-EEG data. We construct a minimal example of brain interaction, which we propose as a benchmark for assessing a methodology’s general eligibility for EEG-based connectivity estimation. We envision that this benchmark be extended in a collaborative effort to validate methods in more complex scenarios. Quantitative metrics are defined to assess a method’s performance in terms of source localization, connectivity detection and directionality estimation. All data and code needed for generating pseudo-EEG data, conducting source reconstruction and connectivity estimation using baseline methods from the literature, evaluating performance metrics, as well as plotting results, are made publicly available. While this article covers only EEG modeling, we will also provide a magnetoencephalography version of our framework online.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Acar ZA, Makeig S (2010) Neuroelectromagnetic forward head modeling toolbox. J Neurosci Methods 190(2):258–270 Acar ZA, Makeig S (2010) Neuroelectromagnetic forward head modeling toolbox. J Neurosci Methods 190(2):258–270
Zurück zum Zitat Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccalà LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Babiloni F (2006) Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data. IEEE Trans Biomed Eng 53:1802–1812CrossRefPubMed Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccalà LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Babiloni F (2006) Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data. IEEE Trans Biomed Eng 53:1802–1812CrossRefPubMed
Zurück zum Zitat Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28(2):143–157 Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28(2):143–157
Zurück zum Zitat Astolfi L et al (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116(4):920–932CrossRefPubMed Astolfi L et al (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116(4):920–932CrossRefPubMed
Zurück zum Zitat Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84:463–474CrossRefPubMed Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84:463–474CrossRefPubMed
Zurück zum Zitat Baillet S, Mosher JC, Leahy RM (2001a) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30CrossRef Baillet S, Mosher JC, Leahy RM (2001a) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30CrossRef
Zurück zum Zitat Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L (2001b) Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol 46(1):77–96CrossRefPubMed Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L (2001b) Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol 46(1):77–96CrossRefPubMed
Zurück zum Zitat Barnett L, Seth AK (2014) The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods 223:50–68CrossRefPubMed Barnett L, Seth AK (2014) The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods 223:50–68CrossRefPubMed
Zurück zum Zitat Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M, Laureys S, Seth AK (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS One 7(1):e29072CrossRefPubMedPubMedCentral Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M, Laureys S, Seth AK (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS One 7(1):e29072CrossRefPubMedPubMedCentral
Zurück zum Zitat Barttfeld P, Petroni A, Baez S, Urquina H, Sigman M, Cetkovich M, Torralva T, Torrente F, Lischinsky A, Castellanos X, Manes F, Ibanez A (2014) Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology 69(2):65–75CrossRefPubMed Barttfeld P, Petroni A, Baez S, Urquina H, Sigman M, Cetkovich M, Torralva T, Torrente F, Lischinsky A, Castellanos X, Manes F, Ibanez A (2014) Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology 69(2):65–75CrossRefPubMed
Zurück zum Zitat Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30(4):1161–1170CrossRefPubMed Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30(4):1161–1170CrossRefPubMed
Zurück zum Zitat Blythe DAJ, Haufe S, Müller KR, Nikulin VV (2014) The effect of linear mixing in the EEG on hurst exponent estimation. NeuroImage 99:377–387 Blythe DAJ, Haufe S, Müller KR, Nikulin VV (2014) The effect of linear mixing in the EEG on hurst exponent estimation. NeuroImage 99:377–387
Zurück zum Zitat Bola M, Sabel BA (2015) Dynamic reorganization of brain functional networks during cognition. Neuroimage 114:398–413CrossRefPubMed Bola M, Sabel BA (2015) Dynamic reorganization of brain functional networks during cognition. Neuroimage 114:398–413CrossRefPubMed
Zurück zum Zitat Breakspear M, Brammer M, Robinson PA (2003) Construction of multivariate surrogate sets from nonlinear data using the wavelet transform. Phys D Nonlinear Phenom 182:1–22CrossRef Breakspear M, Brammer M, Robinson PA (2003) Construction of multivariate surrogate sets from nonlinear data using the wavelet transform. Phys D Nonlinear Phenom 182:1–22CrossRef
Zurück zum Zitat Breakspear M, Brammer MJ, Bullmore ET, Das P, Williams LM (2004) Spatiotemporal wavelet resampling for functional neuroimaging data. Hum Brain Mapp 23(1):1–25CrossRefPubMedPubMedCentral Breakspear M, Brammer MJ, Bullmore ET, Das P, Williams LM (2004) Spatiotemporal wavelet resampling for functional neuroimaging data. Hum Brain Mapp 23(1):1–25CrossRefPubMedPubMedCentral
Zurück zum Zitat Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104CrossRefPubMed Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104CrossRefPubMed
Zurück zum Zitat Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63(2):910–920CrossRefPubMed Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63(2):910–920CrossRefPubMed
Zurück zum Zitat Castaño Candamil S, Höhne J, Martinez-Vargas JD, An X-W, Castellanos-Dominguez G, Haufe S (2015) Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. Neuroimage 118:598–612 Castaño Candamil S, Höhne J, Martinez-Vargas JD, An X-W, Castellanos-Dominguez G, Haufe S (2015) Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. Neuroimage 118:598–612
Zurück zum Zitat Chella F, Marzetti L, Pizzella V, Zappasodi F, Nolte G (2014) Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG. Neuroimage 91:146–161CrossRefPubMed Chella F, Marzetti L, Pizzella V, Zappasodi F, Nolte G (2014) Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG. Neuroimage 91:146–161CrossRefPubMed
Zurück zum Zitat Cho JH, Vorwerk J, Wolters CH, Knosche TR (2015) Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110:60–77CrossRefPubMed Cho JH, Vorwerk J, Wolters CH, Knosche TR (2015) Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110:60–77CrossRefPubMed
Zurück zum Zitat Colton D, Kress R (1997) Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, Springer, Berlin Colton D, Kress R (1997) Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, Springer, Berlin
Zurück zum Zitat Dähne S, Nikulin VV, Ramírez D, Schreier PJ, Müller KR, Haufe S (2014) Finding brain oscillations with power dependencies in neuroimaging data. NeuroImage 96:334–348CrossRefPubMed Dähne S, Nikulin VV, Ramírez D, Schreier PJ, Müller KR, Haufe S (2014) Finding brain oscillations with power dependencies in neuroimaging data. NeuroImage 96:334–348CrossRefPubMed
Zurück zum Zitat Darvas F, Pantazis D, Kucukaltun-yildirim E, Leahy RM (2004) Mapping human brain function with meg and EEG: methods and validation. NeuroImage 23:289–299CrossRef Darvas F, Pantazis D, Kucukaltun-yildirim E, Leahy RM (2004) Mapping human brain function with meg and EEG: methods and validation. NeuroImage 23:289–299CrossRef
Zurück zum Zitat De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28(12):1334–1346CrossRefPubMed De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28(12):1334–1346CrossRefPubMed
Zurück zum Zitat Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMed Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMed
Zurück zum Zitat Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:130714CrossRefPubMedPubMedCentral Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:130714CrossRefPubMedPubMedCentral
Zurück zum Zitat Ding L, He B (2008) Sparse source imaging in EEG with accurate field modeling. Hum Brain Mapp 29:1053–1067CrossRefPubMed Ding L, He B (2008) Sparse source imaging in EEG with accurate field modeling. Hum Brain Mapp 29:1053–1067CrossRefPubMed
Zurück zum Zitat Dolan KT, Neiman A (2002) Surrogate analysis of coherent multichannel data. Phys Rev E 65(2 Pt 2):026108CrossRef Dolan KT, Neiman A (2002) Surrogate analysis of coherent multichannel data. Phys Rev E 65(2 Pt 2):026108CrossRef
Zurück zum Zitat Evans A, Collins D, Mills SR, Brown ED, Kelly RL, Peters T (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference, 1993 IEEE conference record, vol. 3, pp 1813–1817 Evans A, Collins D, Mills SR, Brown ED, Kelly RL, Peters T (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference, 1993 IEEE conference record, vol. 3, pp 1813–1817
Zurück zum Zitat Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage 60(1):476–488CrossRefPubMed Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage 60(1):476–488CrossRefPubMed
Zurück zum Zitat Ewald A, Nolte FSG (2013) Identifying causal networks of neuronal sources from eeg/meg data with the phase slope index: a simulation study. Biomed Tech 22:1–14 Ewald A, Nolte FSG (2013) Identifying causal networks of neuronal sources from eeg/meg data with the phase slope index: a simulation study. Biomed Tech 22:1–14
Zurück zum Zitat Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102CrossRef Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102CrossRef
Zurück zum Zitat Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative GroupNeuroImage (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327 Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative GroupNeuroImage (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327
Zurück zum Zitat Geffroy D, Rivière D, Denghien I, Souedet N, Laguitton S, Cointepas Y (2011) Brainvisa: a complete software platform for neuroimaging. In: Python in Neuroscience workshop. Paris Geffroy D, Rivière D, Denghien I, Souedet N, Laguitton S, Cointepas Y (2011) Brainvisa: a complete software platform for neuroimaging. In: Python in Neuroscience workshop. Paris
Zurück zum Zitat Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77(378):304–313 Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77(378):304–313
Zurück zum Zitat Gomes JM, Bedard C, Valtcheva S, Nelson M, Khokhlova V, Pouget P, Venance L, Bal T, Destexhe A (2016) Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons. Biophys J 110(1):234–246CrossRefPubMedPubMedCentral Gomes JM, Bedard C, Valtcheva S, Nelson M, Khokhlova V, Pouget P, Venance L, Bal T, Destexhe A (2016) Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons. Biophys J 110(1):234–246CrossRefPubMedPubMedCentral
Zurück zum Zitat Gómez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008) Measuring directional coupling between EEG sources. NeuroImage 43:497–508CrossRefPubMed Gómez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008) Measuring directional coupling between EEG sources. NeuroImage 43:497–508CrossRefPubMed
Zurück zum Zitat Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M (2013a) MEG and EEG data analysis with MNE-Python. Front Neurosci 7:267CrossRefPubMedPubMedCentral Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M (2013a) MEG and EEG data analysis with MNE-Python. Front Neurosci 7:267CrossRefPubMedPubMedCentral
Zurück zum Zitat Gramfort A, Strohmeier D, Haueisen J, Hamalainen MS, Kowalski M (2013b) Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. Neuroimage 70:410–422CrossRefPubMed Gramfort A, Strohmeier D, Haueisen J, Hamalainen MS, Kowalski M (2013b) Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. Neuroimage 70:410–422CrossRefPubMed
Zurück zum Zitat Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438CrossRef
Zurück zum Zitat Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98(2):694–699CrossRefPubMedPubMedCentral Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98(2):694–699CrossRefPubMedPubMedCentral
Zurück zum Zitat Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, Dubeau F, Gotman J (2008) Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 39(2):755–774 Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, Dubeau F, Gotman J (2008) Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 39(2):755–774
Zurück zum Zitat Hämäläinen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42CrossRefPubMed Hämäläinen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42CrossRefPubMed
Zurück zum Zitat Haufe S (2011) Towards EEG source connectivity analysis. Ph.D. thesis, Berlin Institute of Technology Haufe S (2011) Towards EEG source connectivity analysis. Ph.D. thesis, Berlin Institute of Technology
Zurück zum Zitat Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model of the ICBM152 average head template for EEG source imaging and tCS targeting. In: Conference proceedings IEEE engineering in medicine and biology society (In Press) Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model of the ICBM152 average head template for EEG source imaging and tCS targeting. In: Conference proceedings IEEE engineering in medicine and biology society (In Press)
Zurück zum Zitat Haufe S, Nikulin V, Ziehe A, Müller K-R, Nolte G (2008) Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage 42:726–738CrossRefPubMed Haufe S, Nikulin V, Ziehe A, Müller K-R, Nolte G (2008) Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage 42:726–738CrossRefPubMed
Zurück zum Zitat Haufe S, Nikulin VV, Müller K-R, Nolte G (2012a) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64:120–133CrossRefPubMed Haufe S, Nikulin VV, Müller K-R, Nolte G (2012a) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64:120–133CrossRefPubMed
Zurück zum Zitat Haufe S, Nikulin VV, Nolte G (2012b) Alleviating the influence of weak data asymmetries on Granger-causal analyses. In: Theis F, Cichocki A, Yeredor A, Zibulevsky M (eds) Latent variable analysis and signal separation. Lecture notes in computer science, vol 7191. Springer, Berlin, pp 25–33CrossRef Haufe S, Nikulin VV, Nolte G (2012b) Alleviating the influence of weak data asymmetries on Granger-causal analyses. In: Theis F, Cichocki A, Yeredor A, Zibulevsky M (eds) Latent variable analysis and signal separation. Lecture notes in computer science, vol 7191. Springer, Berlin, pp 25–33CrossRef
Zurück zum Zitat Haufe S, Nikulin VV, Ziehe A, Müller K-R, Nolte G (2009) Estimating vector fields using sparse basis field expansions. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21, pp. 617–624. MIT Press, New York Haufe S, Nikulin VV, Ziehe A, Müller K-R, Nolte G (2009) Estimating vector fields using sparse basis field expansions. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21, pp. 617–624. MIT Press, New York
Zurück zum Zitat Haufe S, Tomioka R, Dickhaus T, Sannelli C, Blankertz B, Nolte G, Müller K-R (2011) Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54:851–859CrossRefPubMed Haufe S, Tomioka R, Dickhaus T, Sannelli C, Blankertz B, Nolte G, Müller K-R (2011) Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54:851–859CrossRefPubMed
Zurück zum Zitat Haufe S, Tomioka R, Nolte G, Müller K-R, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57:1954–1963CrossRefPubMed Haufe S, Tomioka R, Nolte G, Müller K-R, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57:1954–1963CrossRefPubMed
Zurück zum Zitat Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890CrossRefPubMed Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890CrossRefPubMed
Zurück zum Zitat Huang Y, Parra LC, Haufe S, (2015) The New York Head—a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage. In Press Huang Y, Parra LC, Haufe S, (2015) The New York Head—a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage. In Press
Zurück zum Zitat Kamiński MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210CrossRefPubMed Kamiński MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210CrossRefPubMed
Zurück zum Zitat Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30(4):1273–1284CrossRefPubMed Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30(4):1273–1284CrossRefPubMed
Zurück zum Zitat Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125(1–2):195–207 Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125(1–2):195–207
Zurück zum Zitat Lantz G, Spinelli L, Menendez RG, Seeck M, Michel CM (2001) Localization of distributed sources and comparison with functional MRI. Epileptic Disord Special Issue, pp 45–58 Lantz G, Spinelli L, Menendez RG, Seeck M, Michel CM (2001) Localization of distributed sources and comparison with functional MRI. Epileptic Disord Special Issue, pp 45–58
Zurück zum Zitat Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 107(2):159–173CrossRefPubMed Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 107(2):159–173CrossRefPubMed
Zurück zum Zitat Marin Garcia AO, Muller MF, Schindler K, Rummel C (2013) Genuine cross-correlations: which surrogate based measure reproduces analytical results best? Neural Netw 46:154–164CrossRefPubMed Marin Garcia AO, Muller MF, Schindler K, Rummel C (2013) Genuine cross-correlations: which surrogate based measure reproduces analytical results best? Neural Netw 46:154–164CrossRefPubMed
Zurück zum Zitat Marinazzo D, Liao W, Chen H, Stramaglia S (2011) Nonlinear connectivity by Granger causality. Neuroimage 58(2):330–338CrossRefPubMed Marinazzo D, Liao W, Chen H, Stramaglia S (2011) Nonlinear connectivity by Granger causality. Neuroimage 58(2):330–338CrossRefPubMed
Zurück zum Zitat Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. NeuroImage 42:87–98CrossRefPubMed Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. NeuroImage 42:87–98CrossRefPubMed
Zurück zum Zitat Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage 2 (2):89–101 Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage 2 (2):89–101
Zurück zum Zitat Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Proces 47:332–340CrossRef Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Proces 47:332–340CrossRef
Zurück zum Zitat Mullen T, Acar ZA, Worrell G, Makeig S (2011) Modeling cortical source dynamics and interactions during seizure. Conf Proc IEEE Eng Med Biol Soc 2011:1411–1414PubMedCentral Mullen T, Acar ZA, Worrell G, Makeig S (2011) Modeling cortical source dynamics and interactions during seizure. Conf Proc IEEE Eng Med Biol Soc 2011:1411–1414PubMedCentral
Zurück zum Zitat Muthuraman M et al (2014) Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements. PLoS One 9(3):e91441CrossRefPubMedPubMedCentral Muthuraman M et al (2014) Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements. PLoS One 9(3):e91441CrossRefPubMedPubMedCentral
Zurück zum Zitat Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307CrossRefPubMed Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307CrossRefPubMed
Zurück zum Zitat Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:234101CrossRefPubMed Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:234101CrossRefPubMed
Zurück zum Zitat Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515CrossRefPubMed Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515CrossRefPubMed
Zurück zum Zitat Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9CrossRef Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9CrossRef
Zurück zum Zitat Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiol 112(4):713–719CrossRef Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiol 112(4):713–719CrossRef
Zurück zum Zitat Ou W, Hämäläinen MS, Golland P (2009) A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44:932–946CrossRefPubMed Ou W, Hämäläinen MS, Golland P (2009) A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44:932–946CrossRefPubMed
Zurück zum Zitat Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. Neuroimage 60(1):305–323CrossRefPubMed Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. Neuroimage 60(1):305–323CrossRefPubMed
Zurück zum Zitat Palus M (2008) Bootstrapping multifractals: surrogate data from random cascades on wavelet dyadic trees. Phys Rev Lett 101(13):134101CrossRefPubMed Palus M (2008) Bootstrapping multifractals: surrogate data from random cascades on wavelet dyadic trees. Phys Rev Lett 101(13):134101CrossRefPubMed
Zurück zum Zitat Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMed Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65CrossRefPubMed
Zurück zum Zitat Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341 Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:​0710.​3341
Zurück zum Zitat Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951–954CrossRefPubMed Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951–954CrossRefPubMed
Zurück zum Zitat Rath C, Gliozzi M, Papadakis IE, Brinkmann W (2012) Revisiting algorithms for generating surrogate time series. Phys Rev Lett 109(14):144101CrossRefPubMed Rath C, Gliozzi M, Papadakis IE, Brinkmann W (2012) Revisiting algorithms for generating surrogate time series. Phys Rev Lett 109(14):144101CrossRefPubMed
Zurück zum Zitat Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J-F (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. In: Proceedings 9th HBM. Neuroimage 19(2). New York, p 934 Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J-F (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. In: Proceedings 9th HBM. Neuroimage 19(2). New York, p 934
Zurück zum Zitat Rodrigues J, Andrade A (2015) Synthetic neuronal datasets for benchmarking directed functional connectivity metrics. PeerJ 3:e923 Rodrigues J, Andrade A (2015) Synthetic neuronal datasets for benchmarking directed functional connectivity metrics. PeerJ 3:e923
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed
Zurück zum Zitat Sameshima K, Takahashi DY, Baccalá LA (2015) On the statistical performance of granger-causal connectivity estimators. Brain Inf 2:1–15 Sameshima K, Takahashi DY, Baccalá LA (2015) On the statistical performance of granger-causal connectivity estimators. Brain Inf 2:1–15
Zurück zum Zitat Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11CrossRefPubMed Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11CrossRefPubMed
Zurück zum Zitat Sasaki T, Abe M, Okumura E, Okada T, Kondo K, Sekihara K, Ide W, Kamada H (2013) Disturbed resting functional inter-hemispherical connectivity of the ventral attentional network in alpha band is associated with unilateral spatial neglect. PLoS One 8(9):e73416CrossRefPubMedPubMedCentral Sasaki T, Abe M, Okumura E, Okada T, Kondo K, Sekihara K, Ide W, Kamada H (2013) Disturbed resting functional inter-hemispherical connectivity of the ventral attentional network in alpha band is associated with unilateral spatial neglect. PLoS One 8(9):e73416CrossRefPubMedPubMedCentral
Zurück zum Zitat Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179(1):121–130CrossRefPubMed Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179(1):121–130CrossRefPubMed
Zurück zum Zitat Shahbazi F, Ewald A, Nolte G (2015) Self-Consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112:299–309CrossRefPubMed Shahbazi F, Ewald A, Nolte G (2015) Self-Consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112:299–309CrossRefPubMed
Zurück zum Zitat Shahbazi F, Ewald A, Ziehe A, Nolte G (2010) Constructing surrogate data to control for artifacts of volume conduction for functional connectivity measures. In: Magjarevic R, Nagel JH, Supek S, Susac A (eds) 17th International conference on biomagnetism advances in biomagnetism—biomag. IFMBE proceedings, vol 28, pp 207–210. Springer, Berlin Shahbazi F, Ewald A, Ziehe A, Nolte G (2010) Constructing surrogate data to control for artifacts of volume conduction for functional connectivity measures. In: Magjarevic R, Nagel JH, Supek S, Susac A (eds) 17th International conference on biomagnetism advances in biomagnetism—biomag. IFMBE proceedings, vol 28, pp 207–210. Springer, Berlin
Zurück zum Zitat Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121–134CrossRefPubMed Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121–134CrossRefPubMed
Zurück zum Zitat Silfverhuth MJ, Hintsala H, Kortelainen J, Seppanen T (2012) Experimental comparison of connectivity measures with simulated EEG signals. Med Biol Eng Comput 50(7):683–688CrossRefPubMed Silfverhuth MJ, Hintsala H, Kortelainen J, Seppanen T (2012) Experimental comparison of connectivity measures with simulated EEG signals. Med Biol Eng Comput 50(7):683–688CrossRefPubMed
Zurück zum Zitat Spiegler A, Kiebel SJ, Atay FM, Knosche TR (2010) Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. Neuroimage 52(3):1041–1058CrossRefPubMed Spiegler A, Kiebel SJ, Atay FM, Knosche TR (2010) Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. Neuroimage 52(3):1041–1058CrossRefPubMed
Zurück zum Zitat Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32(1):129–144CrossRefPubMedPubMedCentral Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32(1):129–144CrossRefPubMedPubMedCentral
Zurück zum Zitat Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684CrossRefPubMedPubMedCentral Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684CrossRefPubMedPubMedCentral
Zurück zum Zitat Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58(14):77–94CrossRef Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58(14):77–94CrossRef
Zurück zum Zitat Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58(2):339–361CrossRefPubMed Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58(2):339–361CrossRefPubMed
Zurück zum Zitat van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35CrossRefPubMed van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35CrossRefPubMed
Zurück zum Zitat Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefPubMed Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefPubMed
Zurück zum Zitat Velez-Perez H, Louis-Dorr V, Ranta R, Dufaut M (2008) Connectivity estimation of three parametric methods on simulated electroencephalogram signals. Conf Proc IEEE Eng Med Biol Soc 2008:2606–2609 Velez-Perez H, Louis-Dorr V, Ranta R, Dufaut M (2008) Connectivity estimation of three parametric methods on simulated electroencephalogram signals. Conf Proc IEEE Eng Med Biol Soc 2008:2606–2609
Zurück zum Zitat Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67CrossRefPubMed Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67CrossRefPubMed
Zurück zum Zitat Vinck M, Huurdeman L, Bosman CA, Fries P, Battaglia FP, Pennartz CM, Tiesinga PH (2015) How to detect the Granger-causal flow direction in the presence of additive noise? Neuroimage 108:301–318CrossRefPubMed Vinck M, Huurdeman L, Bosman CA, Fries P, Battaglia FP, Pennartz CM, Tiesinga PH (2015) How to detect the Granger-causal flow direction in the presence of additive noise? Neuroimage 108:301–318CrossRefPubMed
Zurück zum Zitat Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed
Zurück zum Zitat Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS (2010) The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 51(4):491–505CrossRefPubMed Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS (2010) The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 51(4):491–505CrossRefPubMed
Zurück zum Zitat Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) Measuring information-transfer delays. PLoS One 8(2):e55809CrossRefPubMedPubMedCentral Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) Measuring information-transfer delays. PLoS One 8(2):e55809CrossRefPubMedPubMedCentral
Zurück zum Zitat Wibral M, Rahm B, Rieder M, Lindner M, Vicente R, Kaiser J (2011) Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks. Prog Biophys Mol Biol 105(1–2):80–97CrossRefPubMed Wibral M, Rahm B, Rieder M, Lindner M, Vicente R, Kaiser J (2011) Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks. Prog Biophys Mol Biol 105(1–2):80–97CrossRefPubMed
Zurück zum Zitat Winkler I, Panknin D, Bartz D, Müller K-R, Haufe S (2015) Validity of time reversal for testing Granger causality. IEEE Trans Sig Process 64(11):2746–2760CrossRef Winkler I, Panknin D, Bartz D, Müller K-R, Haufe S (2015) Validity of time reversal for testing Granger causality. IEEE Trans Sig Process 64(11):2746–2760CrossRef
Zurück zum Zitat Zwoliński P, Roszkowski M, Żygierewicz J, Haufe S, Nolte G, Durka PJ (2010) Open database of epileptic EEG with MRI and postoperational assessment of foci—a real world verification for the EEG inverse solutions. Neuroinformatics 8:285–299CrossRefPubMedPubMedCentral Zwoliński P, Roszkowski M, Żygierewicz J, Haufe S, Nolte G, Durka PJ (2010) Open database of epileptic EEG with MRI and postoperational assessment of foci—a real world verification for the EEG inverse solutions. Neuroinformatics 8:285–299CrossRefPubMedPubMedCentral
Metadaten
Titel
A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies
verfasst von
Stefan Haufe
Arne Ewald
Publikationsdatum
02.06.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2019
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0498-y

Weitere Artikel der Ausgabe 4/2019

Brain Topography 4/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.