Skip to main content

01.01.2019 | Systems-Level Quality Improvement | Ausgabe 1/2018

Journal of Medical Systems 1/2018

A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery

Journal of Medical Systems > Ausgabe 1/2018
H. Benhar, A. Idri, J. L. Fernández-Alemán
Wichtige Hinweise
This article is part of the Topical Collection on Systems-Level Quality Improvement


The increasing amount of data produced by various biomedical and healthcare systems has led to a need for methodologies related to knowledge data discovery. Data mining (DM) offers a set of powerful techniques that allow the identification and extraction of relevant information from medical datasets, thus enabling doctors and patients to greatly benefit from DM, particularly in the case of diseases with high mortality and morbidity rates, such as heart disease (HD). Nonetheless, the use of raw medical data implies several challenges, such as missing data, noise, redundancy and high dimensionality, which make the extraction of useful and relevant information difficult and challenging. Intensive research has, therefore, recently begun in order to prepare raw healthcare data before knowledge extraction. In any knowledge data discovery (KDD) process, data preparation is the step prior to DM that deals with data imperfectness in order to improve its quality so as to satisfy the requirements and improve the performances of DM techniques. The objective of this paper is to perform a systematic mapping study (SMS) on data preparation for KDD in cardiology so as to provide an overview of the quantity and type of research carried out in this respect. The SMS consisted of a set of 58 selected papers published in the period January 2000 and December 2017. The selected studies were analyzed according to six criteria: year and channel of publication, preparation task, medical task, DM objective, research type and empirical type. The results show that a high amount of data preparation research was carried out in order to improve the performance of DM-based decision support systems in cardiology. Researchers were mainly interested in the data reduction preparation task and particularly in feature selection. Moreover, the majority of the selected studies focused on classification for the diagnosis of HD. Two main research types were identified in the selected studies: solution proposal and evaluation research, and the most frequently used empirical type was that of historical-based evaluation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Journal of Medical Systems 1/2018 Zur Ausgabe