Skip to main content
Erschienen in: BMC Infectious Diseases 1/2019

Open Access 01.12.2019 | Research article

A systematic review of the epidemiology of hepatitis A in Africa

verfasst von: Jenna Patterson, Leila Abdullahi, Gregory D. Hussey, Rudzani Muloiwa, Benjamin M. Kagina

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2019

Abstract

Background

Hepatitis A, caused by the hepatitis A virus (HAV), is a vaccine preventable disease. In Low and Middle-Income Countries (LMICs), poor hygiene and sanitation conditions are the main risk factors contributing to HAV infection. There have been, however, notable improvements in hygiene and sanitation conditions in many LMICs. As a result, there are studies showing a possible transition of some LMICs from high to intermediate HAV endemicity. The World Health Organization (WHO) recommends that countries should routinely collect, analyse and review local factors (including disease burden) to guide the development of hepatitis A vaccination programs. Up-to-date information on hepatitis A burden is, therefore, critical in aiding the development of country-specific recommendations on hepatitis A vaccination.

Methods

We conducted a systematic review to present an up-to-date, comprehensive synthesis of hepatitis A epidemiological data in Africa.

Results

The main results of this review include: 1) the reported HAV seroprevalence data suggests that Africa, as a whole, should not be considered as a high HAV endemic region; 2) the IgM anti-HAV seroprevalence data showed similar risk of acute hepatitis A infection among all age-groups; 3) South Africa could be experiencing a possible transition from high to intermediate HAV endemicity. The results of this review should be interpreted with caution as the reported data represents research work with significant sociocultural, economic and environmental diversity from 13 out of 54 African countries.

Conclusions

Our findings show that priority should be given to collecting HAV seroprevalence data and re-assessing the current hepatitis A control strategies in Africa to prevent future disease outbreaks.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12879-019-4235-5) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
EPI
Expanded Programme on Immunisation
HAV
Hepatitis A virus
IgG
Immunoglobin class G antibodies
IgM
Immunoglobulin class M antibodies
LMICs
Low and Middle-Income Countries
MeSH
Medical Subject Headings
nRCT
non-Randomised Control Trial
PRISMA
Preferred Reporting Items for Systematic Reviews and Meta-analyses
RCT
Randomised Control Trial
RT-PCR
Real time PCR
SES
Socio-Economic Status
VPD
Vaccine Preventable Disease
WHO
World Health Organization

Background

Hepatitis A is a vaccine preventable disease (VPD) caused by the hepatitis A virus (HAV). The hepatitis A virus is transmitted from person-to-person through the faecal-oral route primarily by ingestion of contaminated food or water and/or contact with infectious persons [1, 2]. Poor hygiene and sanitation pose the greatest risk for HAV infection, particularly in Low and Middle-Income Countries (LMICs) [3]. Infection with HAV causes an immune response which is assessed by measurement of specific antibodies: immunoglobulin class M (IgM) anti-HAV antibodies and immunoglobin class G (IgG) anti-HAV antibodies [4]. Anti-HAV IgM antibodies are detectable following acute infection and antibody titres usually decline to zero within 3–6 months [5, 6]. In contrast, anti-HAV IgG antibodies appear within 2–3 months after infection and persist for a long period of time conferring protective immunity against future infections [2]. A majority of hepatitis A seroprevalence studies, therefore, often report anti-HAV IgG and not anti-HAV IgM seroprevalence data.
Common clinical symptoms of hepatitis A infection include jaundice, fever, malaise, anorexia, nausea and abdominal discomfort [1, 4]. Infection with HAV in early childhood is thought to be largely asymptomatic and results in the development of lifelong protective immunity [4]. In contrast, infection with HAV after early childhood is associated with an increased risk of symptomatic, acute hepatitis A infection [1, 7, 8]. The case fatality rate associated with acute hepatitis A in children and adults < 50 years old ranges from 0.3 to 0.6%, while the case fatality rate in adults ≥50 years old ranges from 1.8 to 5.4% [9]. The high costs associated with management of acute hepatitis A are well appreciated by healthcare providers. Hepatitis A patients typically miss several weeks of work or school and the costs of supportive medical care can be substantial [4]. Therefore, vaccination against hepatitis A has been found to be cost-effective in many LMICs and should be prioritized in settings where hepatitis A is a public health concern [10]. Routine hepatitis A vaccination policies can only be developed based on up-to-date and high-quality contextual evidence that includes the burden of the disease.
The World Health Organization (WHO) describes the epidemiology of hepatitis A according to HAV endemicity levels [2]. Endemicity is measured by HAV seroprevalence; i.e. the proportion of people in the population with anti-HAV IgG antibodies [11]. The levels of HAV endemicity are classified by the WHO as follows: high (≥ 90% IgG seroprevalence by 10 years of age), intermediate (≥ 50% IgG seroprevalence by 15 years of age, < 90% IgG seroprevalence by 10 years of age), and low (≥ 50% IgG seroprevalence by 30 years of age, < 50% IgG seroprevalence by 15 years of age) [2]. The latest global review of HAV endemicity was published in 2010 and included epidemiological data from 1990 to 2005. The review classifies Africa as a high HAV endemic region [12]. Since 2005, many African countries have made significant improvements in water, sanitation and developments in socio-economic status (SES). These improvements are likely to cause changes in the average age of first exposure and infection with HAV as well as in the prevalence of acute hepatitis A. Recent hepatitis A studies conducted in Africa, though few and far between, suggest that some regions on the continent could be experiencing a transition in hepatitis A epidemiology. Our aim in this review is to provide an up-to-date synthesis of hepatitis A epidemiology in Africa.

Rationale

The WHO does not recommend routine vaccination against hepatitis A in high endemic settings [2]. As of 2018, no African country included routine hepatitis A vaccination as part of its’ Expanded Programme on Immunisation (EPI). The WHO recommendation is that countries should routinely collect and review local factors and epidemiological data needed to guide the development of evidence-based recommendations on hepatitis A vaccination [2]. To the best of our knowledge, an up-to-date, comprehensive synthesis of hepatitis A epidemiological data in Africa is lacking. Though there have been several primary studies on hepatitis A epidemiology published since 2005 in Africa, the review team is not aware of any recent publication that has synthesised data from this setting [1316]. The development of effective public health control strategies against hepatitis A require optimal characterisation of the disease epidemiology. Therefore, this systematic review aims to fill the existing knowledge gap to guide considerations of development of public health strategies to control hepatitis A in the region.

Methods

Objectives

To describe the epidemiology of hepatitis A in Africa.

Primary objectives

  • To estimate the HAV seroprevalence (the prevalence of IgG anti-HAV antibodies) in Africa
  • To estimate the prevalence of IgM anti-HAV antibodies
  • To estimate the acute hepatitis A hospitalisation rate in Africa
  • To estimate the acute hepatitis A case fatality rate in Africa

Secondary objective

  • To assess the impact of co-morbidities on hepatitis A epidemiology in Africa

Study eligibility criteria

Published and unpublished case-series, case-control, cross-sectional, cohort studies as well as randomised control trial (RCTs) and non-randomised control trial (nRCTs) in any language that reported the epidemiology of hepatitis A in children > 1 year of age as well as in adults in any African country were eligible for inclusion in this review. Studies were eligible for inclusion if they reported on any of the outcomes of this review, including seroprevalence of IgG anti-HAV antibody or prevalence of IgM HAV-antibody detection as well as hepatitis A disease incidence rates, hospitalisation rates, case fatality rates as well as co-infections.

Search strategy

A combination of the following search terms (including the use of Medical Subject Headings (MESH)) was used: hepatitis A, acute hepatitis A, epidemiology, incidence, prevalence, morbidity, mortality, hospitalisation and case-fatality. An example of the search strategy as applied to PubMed is outlined in Table 1. The following electronic databases were searched for relevant published literature: EBSCOhost, MEDLINE via PubMed, ScienceDirect via SciVerse, Scopus via SciVerse, Ovid Discovery and Google Scholar. Grey literature was sourced by consulting with expert researchers in the field and by searching the following grey literature repositories: OpenUCT, OpenGrey, MEDNAR and CORE. The literature search was initially performed in February 2018 and updated in December 2018.
Table 1
Search Strategy for PUBMED
Query #
Search Query
#1
hepatitis A [MeSH Terms] OR hepatitis A [All Fields] OR acute hepatitis A [MeSH Terms] OR acute hepatitis A [All Fields]
#2
epidemiology [MeSH Terms] OR epidemiology [All Fields]
#3
incidence [MeSH Terms] or incidence [All Fields]
#4
prevalence [MeSH Terms] or prevalence [All Fields]
#5
morbidity [MeSH Terms] OR morbidity [All Fields] OR hospitalisation [MeSH Terms] OR hospitalisation [All Fields] OR hospitalization [MeSH Terms] or hospitalization [All Fields]
#6
mortality [MeSH Terms] OR mortality [All Fields] OR case-fatality [MeSH Terms] OR case-fatality [All Fields]
#7
Africa [MeSH Terms] OR Africa [All Fields] OR Algeria [All Fields] OR Angola [All Fields] OR Benin [All Fields] OR Botswana [All Fields] OR Burkina Faso [All Fields] OR Burundi [All Fields] OR Cabo Verde [All Fields] OR Cameroon [All Fields] OR Central African Republic [All Fields] OR Chad [All Fields] OR Comoros [All Fields] OR Congo [All Fields] OR Cote d’Ivoire [All Fields] OR Djibouti [All Fields] OR Egypt [All Fields] OR Equatorial Guinea [All Fields] OR Eritrea [All Fields] OR Ethiopia [All Fields] OR Gabon [All Fields] OR Gambia [All Fields] OR Ghana [All Fields] OR Guinea [All Fields] OR Guinea-Bissau [All Fields] OR Kenya [All Fields] OR Lesotho [All Fields] OR Liberia [All Fields] OR Libya [All Fields] OR Madagascar [All Fields] OR Malawi [All Fields] OR Mali [All Fields] OR Mauritania [All Fields] OR Mauritius [All Fields] OR Morocco [All Fields] OR Mozambique [All Fields] OR Namibia [All Fields] OR Niger [All Fields] OR Nigeria [All Fields] OR Rwanda [All Fields] OR Sao Tome and Principe [All Fields] OR Senegal [All Fields] OR Seychelles [All Fields] OR Sierra Leone [All Fields] OR Somalia [All Fields] OR South Africa [All Fields] OR South Sudan [All Fields] OR Sudan [All Fields] OR Swaziland [All Fields] OR Tanzania [All Fields] OR Togo [All Fields] OR Tunisia [All Fields] OR Uganda [All Fields] OR Zambia [All Fields] OR Zimbabwe [All Fields]
#8
2005 [PDAT]: 2018 [PDAT]
#9
#1 AND #2 AND #3 AND #4 AND #
Age of participants are included in search filter
Abbreviations: MeSH Medical Subject Heading, PDAT Publication date

Data extraction

Study characteristics and outcomes of interests were extracted from the included studies on a pre-designed data extraction form by two independent reviewers (JP and LA). Prior to use by the two reviewers, the reliability of the extraction form was assessed by piloting 10 randomly selected articles that met the inclusion criteria. The study resolved any disagreements in data extraction through consensus in consultation with BMK. In cases where studies were not available in English, google translate was used to translate the article to English [17].

Data synthesis and analysis

A random effects model was fitted to the study data as it includes estimates taken from a series of independently performed studies. Where heterogeneity between included studies was found to be low in meta-analyses (I2 < 75), pooled outcome measures were reported with 95% confidence intervals for each respective outcome. Where heterogeneity was found to be high in meta-analyses (I2 ≥ 75), narrative reporting was used to describe the prevalence ranges for each respective outcome.

Risk of bias

Each included study was assessed for risk of bias and quality using the Hoy et al., 2012 tool for observational studies [18, 19]. All risk of bias judgements were made by JP and LA. In case of disagreement in risk of bias and quality assessment, a final decision was made through consensus in consultation with BMK.

Reporting of review

This systematic review was registered with PROSPERO (registration number CRD42017079730) and the results are reported using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines checklist (Additional file 1) [20].

Results

The initial database searches yielded 10,598 records, from which 4,334 duplicates were removed. No additional records were found when the search was updated in December 2018. A further 6,264 records were excluded following the screening of titles and abstracts (Fig. 1). The full-text of the remaining 121 records were screened, from which 30 records met the final inclusion criteria. A further two unpublished studies at the time of the search were obtained through personal communication with hepatitis A researchers [11, 21]. Since the time of reciept of these studies, they have since been published. Therefore, a total of 32 studies were included in this review. The included studies were conducted in 13 African countries, a majority of these being from the North, West and Southern regions of the continent (Fig. 2). Figure 2 displays the geographic location of 27 of the included studies conducted on the African continent. Five of the 32 included studies (not shown in Fig. 2) reported hepatitis A data from expatriate communities (adults and children) from the African continent, living in Europe and North America [2226].
Twenty-three of the included studies were cross-sectional studies (Table 2). A majority of the included studies were conducted in the public healthcare sectors of lower-middle income countries. Of the 32 included studies, 17 provided data on anti-HAV IgG alone (referred to hereon as HAV seroprevalence), 11 provided data on anti-HAV IgM alone (referred to hereon as IgM anti-HAV seroprevalence) and 4 studies provided data together for IgG anti-HAV and IgM anti-HAV seroprevalence. Our analyses categorize the included studies according to the population age-groups [children & adolescents (1 to 18 years of age), adults (> 18 years of age) and all ages (1 to 99 years of age)], of which children and adolescent populations were most commonly reported on (56% of included studies). Measurement of the anti-HAV antibodies was assessed using ELISA assays for both IgG and IgM positivity in all studies. Real time PCR (RT-PCR) was used in 4 studies, in addition to the ELISA assay (Table 3). Details on the assay detection limits were missing from all included studies.
Table 2
Characteristics of studies included in the review
Author, Year (Citation)
Study Design
Year(s) of Data Collection
Country
Population
Sample Size (n)
Outcome Measures
Study Objective
Abdulla et al., 2010 [22]
Cross-sectional
2006 to 2008
General Africa
Children & adolescents
29
IgG
To determine the prevalence of acute hepatitis A virus infection and immunity among internationally adopted children
Afegbua et al., 2013 [27]
Cross-sectional
2009
Nigeria
Children & adolescents
403
IgG
To determine seroprevalence of HAV among schoolchildren and adolescents in Kaduna State and identify factors associated with seropositivity
Al-Aziz et al., 2008 [28]
Cohort
2008
Egypt
Children & adolescents
296
IgG
To determine the seroprevalence of HAV antibodies among group of children
Blanchi et al., 2014 [23]
Cohort
2009 to 2012
General Africa
Children
146
IgM
To describe infectious diseases in internationally adopted children
Bonney et al., 2013 [29]
Cross-sectional
2008 to 2011
Ghana
All ages
285
IgM
To determine if viral hemorrhagic fevers and viral hepatitides contribute to hospital morbidity in the Central and Northern parts of Ghana
Bouskraoui et al., 2009 [30]
Cross-sectional
2005 to 2006
Morrocco
Children & adolescents
150
IgG
To assess the prevalence of viral hepatitis A infection in febrile icteric children and to examine the main risk factors of transmission
Burrous et al., 2010 [31]
Cross-sectional
2006 to 2008
Morrocco
Children & adolescents
129
IgM
To assess the prevalence of viral hepatitis A infection in febrile icteric children and to examine the main risk factors of transmission
El-Karasksy et al., 2008 [32]
Cohort
2005
Egypt
Children & adolescents
172
IgG
To determine the prevalence of anti-hepatitis A virus antibodies among 172 children with chronic liver disease
Ellis et al., 2008 [33]
Cohort
2008
Mali
Children
36
IgM
Phase 1 study in Malian children of the blood stage malaria vaccine
Enoch et al., 2019 [21]
Cross-sectional
2009 to 2015
South Africa
Children
482
IgG
To determine the seroprevalence of hepatitis A infection in the Western Cape Province of South Africa
Forbi et al., 2012 [34]
Cohort
2012
Cameroon
Children
78
IgM
To undertake genetic analysis of the hepatitis A virus associated with cases of acute diarrhea among children under five in Cameroon
Forbi et al., 2012_2 [35]
Cross-sectional
2006
Nigeria
Adults
114
IgM
To investigate HAV strains among apparently healthy adult Nigerian subjects
Guenifi et al., 2017 [36]
Cross-sectional
2010 to 2011
Algeria
Children
1061
IgG
To estimate the seroprevalence of hepatitis A virus infection in the district of Setif
Ikobah et al., 2015 [37]
Cross-sectional
2012
Nigeria
Children & adolescents
406
IgG
To determine the seroprevalence and predictors of viral hepatitis A in children aged 1 to 18 years
Jablonka et al., 2017 [38]
Cross-sectional
2015
General Africa
All ages
55
IgG
To determine the seroprevalence of anti-HAV IgG in refugees in Germany
Klouwenberg et al., 2011 [39]
Cohort
2011
Kenya
Children
222
IgM
To determine the temporal pattern of a co-infection of P. falciparum malaria and acute HAV in a cohort of Kenyan children under the age of five
Lopes et al., 2017 [40]
Cross-sectional
2015
South Africa
All ages
300
IgG
To determine the seroprevalence of HAV and HEV antibodies in blood donors giving at the Western Province Blood Transfusion Service
Louati et al., 2009 [41]
Cross-sectional
2007
Tunisia
Adults
376
IgG
To assess hepatitis A virus seroprevalence in blood donors from South Tunisia in two periods; 200 and 2007
Majori et al., 2008 [26]
Cross-sectional
2008
General Africa
All ages
182
IgG & IgM
To assess the seroprevalence of viral hepatitis infections in sub-Saharan immigrants living in Italy
Mazanderani et al., 2018 [11]
Cross-sectional
2005 to 2015
South Africa
All ages
501083
IgG & IgM
To assess seroprevalence rates among specimens tested for HAV serology within South Africa’s public health sector
Mphaka et al., 2016 [42]
Cross-sectional
2016
South Africa
Children & adolescents
46
IgM
To respond to an increase in blood samples testing positive for HAV IgM
Murchiri et al., 2012 [43]
Cross-sectional
2007 to 2008
Kenya
Adults
100
IgM
To determine seroprevalence of HAV, HBV HCV and HEV among patients with acute hepatitis in Nairobi Kenya
Nagu et al., 2008 [44]
Cross-sectional
2006
Tanzania
Adults
260
IgM
To determine the prevalence and predictors of viral hepatitis co-infection among HIV-infected individuals presenting at the HIV care and treatment clinics in the country
Neffatti et al., 2017 [45]
Cross-sectional
2014 to 2015
Tunisia
Adults
216
IgG
To supplement lacking data on hepatitis A and E from rural areas of South Tunisia
Ogefere et al., 2016 [46]
Cross-sectional
2016
Nigeria
All ages
200
IgM
To determine the seroprevalence of anti-HAV IgM in an at-risk population in Benin City and to identify the social, demographic and other risk factors
Raabe et al., 2014 [24]
Cross-sectional
2014
General Africa
Children
656
IgM
To assess the need to recommend routine HAV vaccination in internationally adopted children
Rabenau et al., 2010 [47]
Cohort
2007
Lesotho
Adults
205
IgG
To screen international adoptees for acute HAV infection
Rezig et al., 2008 [48]
Cross-sectional
2008
Algeria
Children & adolescents
3357
IgG
To assess the seroprevalence of coinfecting viruses in a cohort of 205 HIV-infected individuals
Smahi et al., 2009 [49]
Cross-sectional
2006
Algeria
Children
252
IgG
To determine the seroprevalence of hepatitis A and E infections
Sule et al., 2013 [50]
Cross-sectional
2010 to 2011
Nigeria
All ages
91
IgG
To determine the prevalence of anti-hepatitis A virus IgG antibody and associated factors among residents of Osogbo
Tantawy et al., 2012 [51]
Case-control
2009 to 2010
Egypt
Children & adolescents
182
IgG
To evaluate the seroprevalence of hepatitis A in Egyptian patients with haemophilia A
Traore et al., 2012
Cross-sectional
2010 to 2012
Burkina Faso
Adults
91
IgG & IgM
To assess the seroprevalence of antibodies to both HAV and HEV in central Burkina Faso in the absence of a recorded hepatitis epidemic
Abbreviations: HAV Hepatitis A virus, IgG Immunoglobin class G, HBV Hepatitis B virus, HCV Hepatitis C virus, HEV Hepatitis E virus
Table 3
Assays used in included studies
Author, Year
Assay
Brand
Abdulla et al., 2010 [22]
ELISA
DiaSorin
Afegbua et al., 2013 [27]
ELISA
Asia-lion Bitechnology
Al-Aziz et al., 2008 [28]
ELISA
DiaSorin
Blanchi et al., 2014 [23]
Serology
NR
Bonney et al., 2013 [29]
RT-PCR
RealStar
Bouskraoui et al., 2009 [30]
ELISA
NR
Burrous et al., 2010 [31]
ELISA
DiaSorin
El-Karasksy et al., 2008 [32]
ELISA
DiaSorin
Ellis et al., 2008 [33]
Serology & ALT levels
NR
Enoch et al., 2019 [21]
ELISA
Siemens
Forbi et al., 2012 [34]
RT-PCR
Applied Biosystems
Forbi et al., 2012_2 [35]
RT-PCR
NR
Guenifi et al., 2017 [36]
ELISA
Roche
Ikobah et al., 2015 [37]
EIA
DRG International Inc.
Jablonka et al., 2017 [38]
ELISA
Abbott ARC
Klouwenberg et al., 2011 [39]
ELISA
BioChain
Lopes et al., 2017 [40]
ELISA
Abbott ARC
Louati et al., 2009 [41]
ELISA
DiaSorin
Majori et al., 2008 [26]
ELISA
Abbott ARC
Mazanderani et al., 2018 [11]
Serology
NR
Mphaka et al., 2016 [42]
Serology
NR
Murchiri et al., 2012 [43]
ELISA
NR
Nagu et al., 2008 [44]
ELISA
Adaltis
Neffatti et al., 2017 [45]
RT-PCR
Wantani
Ogefere et al., 2016 [46]
Serology
Qingdao High-top Biotech
Raabe et al., 2014 [24]
Serology
N/A
Rabenau et al., 2010 [47]
ELISA
AxSYM MEIA
Rezig et al., 2008 [48]
ELISA
Bio-Rad
Smahi et al., 2009 [49]
Serology
NR
Sule et al., 2013 [50]
ELISA
DiaSorin
Tantawy et al., 2012 [51]
ELISA
DiaSorin
Traore et al., 2012
ELISA
DiaSorin
Abbreviations: NR Not reported, ELISA Enzyme-linked immunosorbent assay, RT-PCR Reverse transcription polymerase chain reaction, EIA Competitive enzyme immunoassay, ALT Alanine aminotransferase

HAV seroprevalence in Africa from 2008 to 2018

Heterogeneity was high (I2 = 99.21%) among the 15 studies pooled for analysis of IgG seroprevalence in all age groups. This was not surprising considering the diversity of the included studies, thus we categorized the analysis of HAV seroprevalence by age-groups (Fig. 3). The estimated average of the reported HAV seroprevalence for children and adolescents among included studies was 57.0% (ES = 0.57; 95% CI = 0.40, 0.73) as compared to compared to 95.0% (ES = 0.98; 95% CI = 0.85, 1.00) for adults.
Data reported by Mazanderani et al., (2018) presented a unique opportunity to further explore of HAV seroprevalence by age-groups in South Africa from 2005 to 2015 (Fig. 4). The data displayed in Fig. 4 shows that HAV seroprevalence for children, adolescents < 15 years old remained below 90% for any given year between 2005 and 2015. Additionally, Fig. 4 shows that HAV seroprevalence for adolescents ≥ 15 and adults < 20 reduced from its highest in 2011 (92.8%) to 83.5% in 2015.

IgM anti-HAV seroprevalence in Africa from 2008 to 2018

We have used IgM anti-HAV seroprevalence as a marker for acute hepatitis A infection in this review [52]. Pooled acute hepatitis A prevalence for 2008 to 2018 showed high heterogeneity (I2 = 98.1%) (Fig. 5). An outlier in the data (Burros et al., 2010) reported acute hepatitis A prevalence in a population of febrile icteric children [91.0% (ES = 0.91; 95% CI = 0.85, 0.96)] and removed from the analysis. With removal of the outlier from the dataset, the average annual acute hepatitis A prevalence was reported to be approximately 5.0% (ES = 0.05; 95% CI = 0.03, 0.08).
We further explored the age-related risk of acute hepatitis A infection in Africa. When assessing IgM anti-HAV seroprevalence by age-group, the heterogeneity between studies was found to be relatively low (I2 = 74.73) (Fig. 6). The estimated average IgM anti-HAV seroprevalence for children and adolescents among included studies was 7.0% (ES = 0.07; 95% = 0.04, 0.12) (Fig. 6). The estimated average IgM anti-HAV seroprevalence for adults among included studies was 5.0% (ES = 0.05; 95% = 0.03, 0.07) (Fig. 6). The similarity in the estimated IgM anti-HAV seroprevalences among children, adolescents and adults is not expected in a high HAV endemic region such as Africa.

IgM anti-HAV seroprevalence in South Africa

Data reported by Mazanderani et al., (2018) allowed us to further explore age-related IgM anti-HAV seroprevalence in South Africa, a country with no routine hepatitis A vaccination [11]. Figure 7 shows the annual IgM anti-HAV seroprevalence by age-group between 2005 and 2015 in South Africa, in which the overall IgM anti-HAV seroprevalence was found to be highest in children < 15 years of age. Acute hepatitis A infection rates over the decade for age groups < 10 years of age and 10 to 14 years of age were approximately 16.5 and 15.0%, respectively. The prevalence of acute hepatitis A in South Africa appeared to increase for all reported age-groups between 2005 and 2015.

Methodological quality

For each included study, risk of bias and quality assessments were conducted using the Hoy et al., risk of bias tool that examines internal and external validity of observation studies. Studies were judged as having ‘low risk’ if scored 8–10, ‘moderate risk’ if scored 5–7 and ‘high risk’ if scored 0–5. Scores were assigned by two (JP and LA) reviewers and the reasons for the assigned score was provided (Table 4). The scores assigned by the two reviewers we then compared. Where the assigned score made by JP and LA differed, these differences were resolved through consensus in consultation with BMK. For any score below 10, a descriptive summary of the information that influenced our judgments was provided. Majority of the studies were scored either 10 or 8 due to one or a combination of the following reasons: 1) selection of the research location was not justified; 2) Selection of study participants was not generalizable to the entire population; 3) Selection bias may be present.
Table 4
Risk of Bias assessment for included studies
Author, Year
Risk of Bias
Hoy et al. tool Score
Score Description
Abdulla et al., 2010 [22]
Low
10
 
Afegbua et al., 2013 [27]
Low
8
1) Selection of research location was convenience and not justified as generalizable to entire population; 2) No description of how survey was conducted is given
Al-Aziz et al., 2008 [28]
Low
9
1) Selection of research location was convenience and not justified as generalizable to entire population
Blanchi et al., 2014 [23]
Low
10
 
Bonney et al., 2013 [29]
Low
9
1) Selection of research location was convenience and not justified as generalizable to entire population
Bouskraoui et al., 2009 [30]
Low
10
 
Burrous et al., 2010 [31]
Low
10
 
El-Karasksy et al., 2008 [32]
Low
9
1) Selection of research location was convenience and not justified as generalizable to entire population
Ellis et al., 2008 [33]
Low
10
 
Enoch et al., 2019 [21]
Low
10
 
Forbi et al., 2012 [34]
Low
9
1) Selection of research location was convenience and not justified as generalizable to entire population
Forbi et al., 2012_2 [35]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Guenifi et al., 2017 [36]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Ikobah et al., 2015 [37]
Low
9
1) Selection of total anti-HAV antibody testing may confound results
Jablonka et al., 2017 [38]
Low
10
 
Klouwenberg et al., 2011 [39]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Lopes et al., 2017 [40]
Low
9
1) Years of data collection not described in publication
Louati et al., 2009 [41]
Low
10
 
Majori et al., 2008 [26]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Mazanderani et al., 2018 [11]
Low
10
 
Mphaka et al., 2016 [42]
Low
8
1) Selection of research population was not justified as generalizable to entire population; 2) No random selection or census undertaken
Murchiri et al., 2012 [43]
Low
8
1) Purposive sampling leads to selection bias; 2) Selection of research population was not justified as generalizable to entire population
Nagu et al., 2008 [44]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Neffatti et al., 2017 [45]
Low
10
 
Ogefere et al., 2016 [46]
Low
9
1) Sampling method may have led to selection bias
Raabe et al., 2014 [24]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Rabenau et al., 2010 [47]
Low
9
1) Selection of research population was not justified as generalizable to entire population
Rezig et al., 2008 (55)
Low
10
 
Smahi et al., 2009 (56)
Low
10
 
Sule et al., 2013 (57)
Low
9
1) Selection of research population was not justified as generalizable to entire population
Tantawy et al., 2012 (58)
Low
10
 
Traore et al., 2012 (59)
Low
9
1) Selection of research location was convenience and not justified as generalizable to entire population

Discussion

This systematic review evaluated the epidemiology of hepatitis A in participants > 1 year of age in Africa. The main findings of the review include: 1) the reported HAV seroprevalence data suggests that Africa, as a whole, should not be considered as a high HAV endemic region; 2) the IgM anti-HAV seroprevalence data showed similar risk of acute hepatitis A infection among all age-groups; 3) South Africa could be experiencing a possible transition from high to intermediate HAV endemicity. The results of this review were limited due to lack of detailed age-grouped data from the included studies. Additionally, no included review reported data on the hospitalisation and case fatality rates or co-morbidities occurring with acute hepatitis A which did not allow for the objectives of the paper to be met fully.
Only 13 (24%) out of 54 countries in Africa contributed to the data synthesized in this review. Furthermore, the data included in this review was collected mainly in hospital settings as opposed to from community surveys. A recent study on trends of childhood immunisation research in Africa reported lack of hepatitis A research on the continent [53]. Based on these findings, we believe that more up-to-date research on hepatitis A epidemiology in Africa is needed and will be critical to generate evidence needed to re-think hepatitis A control strategies in the region.
Although limited, the HAV seroprevalence data in this review appear to meet the WHO’s definition of intermediate HAV endemic setting (< 90% IgG seroprevalence by 10 years of age and ≥ 50% IgG seroprevalence by 15 years of age) [54]. The reported HAV seroprevalence estimates for children and adolescents age-groups indicate that the presumed “natural immunisation” during the early childhood is not sufficient to imply high HAV endemicity for the entire continent. Secondly, the reported similarity of IgM anti-HAV seroprevalence among children and adolescents compared with adults was a surprising finding as we expected lower IgM anti-HAV seroprevalence in adults than children due to prior exposure in a high endemic setting. A recent study in China and conducted in a setting undergoing a hepatitis A epidemiological transition, adults aged 20 years and older showed higher disease incidence than children [55]. Thus, our findings corroborate the notion of a HAV epidemiological transition in the African region.
Current global recommendations on hepatitis A vaccination appear to take African countries as homogeneous settings [54]. Our review results showed a large spread in HAV seroprevalence rates as well as IgM anti-HAV seroprevalence rates across the continent. This indicates the heterogeneity of hepatitis A epidemiology, and highly likely, the epidemiology of other VPDs among African countries. For example, in South Africa where comprehensive dataset was available, we reported an increase in IgM anti-HAV seropositivity among all age groups from 2005 to 2015. These results indicate that South Africa is most likely transitioning from high to intermediate endemicity. Previous classifications of South Africa as a high endemic region have been based on limited data published between 1986 and 2002 [56]. This data showed variable HAV seroprevalence rates that were dependent on SES. High HAV seropositivity rates were reported in low SES groups, while high SES groups that were less represented in the data showed low HAV seropositivity rates. Given this and the gradual social economic improvements in South Africa since the collapse of apartheid, it is likely that the HAV epidemiological transition in South Africa has been taking place even before 2005. It would be irrational to extrapolate findings from South Africa to all other African countries as Hepatitis A epidemiology is highly influenced by economic as well as healthcare developments [57]. Our findings suggest that African countries with similar SES developments as South Africa should prioritize generating evidence to guide recommendations on introducing routine immunisation against the disease.
The results of this review must be interpreted with caution due to several limitations. Firstly, the included studies have significant sociocultural, economic and environmental diversity. Secondly, due to the fact that only 13 of 54 countries in Africa contributed to the data synthesized in this review, we were not able to present data for all sub-regions of the continent or by country income category. Thirdly, as data included in this review were collected mainly in hospital settings as opposed to from community surveys, we were unable to stratify our results to urban versus rural areas to assess whether hygiene and sanitation affect the current epidemiology of HAV in Africa. Lastly, although trends in publication of the immunisation research is growing, a lot of research work in Africa still remains unpublished and access to such information is limited [58]. Regardless of these limitations, it is noteworthy to mention that the majority of included studies focused on hepatitis A data in childhood and adolescent populations, which may attest to the anecdotal evidence that children and adolescents are increasingly at risk for acute hepatitis A infection in Africa.
The results of this paper may be an over-estimate of HAV seroprevalence for the general population in Africa as those seeking private healthcare services were not included in this review. Populations seeking private healthcare services are more likely to be of higher social economic status. Higher social economic populations have access to optimal sanitation and are likely to show lower HAV seroprevalence although some may be vaccinated against the disease [27]. Furthermore, the extent of HAV vaccine use in the private sector of Africa is unknown. Future research should include populations seeking both private and private healthcare. Measurement of both IgG and IgM as immunological outcomes should be incorporated in future studies as well as details of the assay detection limits used. Additional missing data such as morbidity, co-morbidity and mortality due to hepatitis A disease should be a research priority. Collectively, complete and high-quality hepatitis A epidemiology data would allow for better pooling of results and meta-analyses. The review team also encourages future studies to incorporate mathematical modelling where the data permits as such an approach could possibly assist health policy decision-makers to better design hepatitis A control strategies in Africa.

Conclusion

This systematic review aimed to generate up-to-date epidemiological data of hepatitis A in Africa with the aim of providing data to better inform hepatitis A public health control measures in the region. We successfully addressed the aim of the study although data on hospitalization, case fatality rates and co-morbidity was missing. With no current routine use of hepatitis A vaccines on the African continent, quality epidemiological data that is currently missing should be compiled and priority be given in re-assessing the current hepatitis A control strategies in the region to prevent possible disease outbreaks in the future.

Acknowledgements

We would like to thank Dr. Ahmad Mazanderani at the National Institute of Communicable Disease in South Africa (NIDC) for kindly sharing data prior to publication.
No ethics approval was required for this study as it is a systematic review using pre-existing, publicly published data.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat de Jong G. Guidelines for the Control of Hepatitis A in South Africa. South Africa: National Institiue of Communicable Disease; 2007. de Jong G. Guidelines for the Control of Hepatitis A in South Africa. South Africa: National Institiue of Communicable Disease; 2007.
2.
Zurück zum Zitat World Health Organization. Hepatitis A vaccines. 2012. World Health Organization. Hepatitis A vaccines. 2012.
3.
Zurück zum Zitat Heathcote J, Elewaut A, Fedail S, Gangl A, Hamid S, Shah M, et al. Managment of acute viral hepatitis. 2003. Heathcote J, Elewaut A, Fedail S, Gangl A, Hamid S, Shah M, et al. Managment of acute viral hepatitis. 2003.
4.
Zurück zum Zitat Aggarwal R, Goel A. Hepatitis A: epidemiology in resource-poor countries. Curr Opin Infect Dis. 2015;28(5):488–96.CrossRef Aggarwal R, Goel A. Hepatitis A: epidemiology in resource-poor countries. Curr Opin Infect Dis. 2015;28(5):488–96.CrossRef
5.
Zurück zum Zitat Ott JJ, Irving G, Wiersma ST. Long-term protective effects of hepatitis A vaccines. A systematic review. Vaccine. 2012;31:3–11.CrossRef Ott JJ, Irving G, Wiersma ST. Long-term protective effects of hepatitis A vaccines. A systematic review. Vaccine. 2012;31:3–11.CrossRef
6.
Zurück zum Zitat Wasley A, Fiore A, Bell BF. Hepatitis A in the Era of Vaccination. Epidemiol Rev. 2006;28.CrossRef Wasley A, Fiore A, Bell BF. Hepatitis A in the Era of Vaccination. Epidemiol Rev. 2006;28.CrossRef
7.
Zurück zum Zitat Ellis A, Rüttimann RW, Jacobs J, Meyerhoff AS, Innis BL. Cost-effectiveness of childhood hepatitis A vaccination in Argentina: a second dose is warranted. Pan Am J Public Health. 2007;21(6). Ellis A, Rüttimann RW, Jacobs J, Meyerhoff AS, Innis BL. Cost-effectiveness of childhood hepatitis A vaccination in Argentina: a second dose is warranted. Pan Am J Public Health. 2007;21(6).
8.
Zurück zum Zitat Rajan E, Shattock AG, Fielding JF. Cost-Effective Analysis of Hepatitis A Prevention in Ireland. Am J Gastroenterol. 2000;95(1).CrossRef Rajan E, Shattock AG, Fielding JF. Cost-Effective Analysis of Hepatitis A Prevention in Ireland. Am J Gastroenterol. 2000;95(1).CrossRef
9.
Zurück zum Zitat Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: A summar and update on the molecular virology, epidemiolgy, pathogenesis and prevention. J Hepatol. 2017;68:167–84.CrossRef Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: A summar and update on the molecular virology, epidemiolgy, pathogenesis and prevention. J Hepatol. 2017;68:167–84.CrossRef
10.
Zurück zum Zitat Anonychuk AM, Tricco A, Bauch CT, Pham B, Gilca V, Duval B, et al. Cost-Effectiveness Analyses of Hepatitis A Vaccine: A Systematic Review to Explore the Effect of Methodological Quality on the Economic Attractiveness of Vaccination Strategies. Pharmaeconomics. 2008;21(1).CrossRef Anonychuk AM, Tricco A, Bauch CT, Pham B, Gilca V, Duval B, et al. Cost-Effectiveness Analyses of Hepatitis A Vaccine: A Systematic Review to Explore the Effect of Methodological Quality on the Economic Attractiveness of Vaccination Strategies. Pharmaeconomics. 2008;21(1).CrossRef
11.
Zurück zum Zitat Mazanderani AH, Motaze VN, McCarthy K, Suchard M, du Plessis NM. Hepatitis A Virus Seroprevalence in South Africa-Estimates using Routine Laboratory Data, 2005-2015. 2018. Mazanderani AH, Motaze VN, McCarthy K, Suchard M, du Plessis NM. Hepatitis A Virus Seroprevalence in South Africa-Estimates using Routine Laboratory Data, 2005-2015. 2018.
12.
Zurück zum Zitat Jacobsen KH, Wiersma ST. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine. 2010;28(41):6653–7.CrossRef Jacobsen KH, Wiersma ST. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine. 2010;28(41):6653–7.CrossRef
13.
Zurück zum Zitat Itani T, Jacobsen KH, Nguyen T, Wiktor SZ. A new method for imputing country-level estimates of hepatitis A virus endemicity levels in the Eastern Mediterranean region. Vaccine. 2014;32(46):6067–74.CrossRef Itani T, Jacobsen KH, Nguyen T, Wiktor SZ. A new method for imputing country-level estimates of hepatitis A virus endemicity levels in the Eastern Mediterranean region. Vaccine. 2014;32(46):6067–74.CrossRef
14.
Zurück zum Zitat Melhem NM, Talhouk R, Rachidi H, Ramia S. Hepatitis A virus in the Middle East and North Africa region: a new challenge. J Viral Hepat. 2014;21(9):605–15.CrossRef Melhem NM, Talhouk R, Rachidi H, Ramia S. Hepatitis A virus in the Middle East and North Africa region: a new challenge. J Viral Hepat. 2014;21(9):605–15.CrossRef
15.
Zurück zum Zitat Jacobsen KH. Hepatitis A virus in West Africa: Is an epidemiological transition beginning. Niger Med J. 2014;55(4):279–84.CrossRef Jacobsen KH. Hepatitis A virus in West Africa: Is an epidemiological transition beginning. Niger Med J. 2014;55(4):279–84.CrossRef
16.
Zurück zum Zitat Koroglu M, Jacobsen KH, Demiray T, Ozbek A, Erkorkmaz U, Altindis M. Socioeconomic indicators are strong predictors of hepatitis A seroprevalence rates in the Middle East and North Africa. J Infect Public Health. 2017;10(5):513–7.CrossRef Koroglu M, Jacobsen KH, Demiray T, Ozbek A, Erkorkmaz U, Altindis M. Socioeconomic indicators are strong predictors of hepatitis A seroprevalence rates in the Middle East and North Africa. J Infect Public Health. 2017;10(5):513–7.CrossRef
17.
Zurück zum Zitat Balk E, Ching M, Chen M, Trikalinos T, KWC L. Assessing the Accuracy of Google Translate to Allow Data Extraction From Trials Published in Non-English Languages. Rockville: Agency for Healthcare Research and Quality; 2013. Contract No.: EHC145-EF Balk E, Ching M, Chen M, Trikalinos T, KWC L. Assessing the Accuracy of Google Translate to Allow Data Extraction From Trials Published in Non-English Languages. Rockville: Agency for Healthcare Research and Quality; 2013. Contract No.: EHC145-EF
18.
Zurück zum Zitat Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater aggreement. J Clin Epidemiol. 2012;65:934–9.CrossRef Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater aggreement. J Clin Epidemiol. 2012;65:934–9.CrossRef
19.
Zurück zum Zitat Werfalli M, Musekiwa A, Engel ME, Ross I, Kengne AP, Levitt NS. The prevalence of type 2 diabetes mellitus among older people in Africa: a systematic review study protocol. BMJ Open. 2014. Werfalli M, Musekiwa A, Engel ME, Ross I, Kengne AP, Levitt NS. The prevalence of type 2 diabetes mellitus among older people in Africa: a systematic review study protocol. BMJ Open. 2014.
20.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.CrossRef
21.
Zurück zum Zitat Enoch A, Hardie DR, Hussey GD, Kagina BM. Hepatitis A seroprevalence in the Western Cape Province, South Africa. Are we in epidemiological transition? SAMJ. 2019;109(5).CrossRef Enoch A, Hardie DR, Hussey GD, Kagina BM. Hepatitis A seroprevalence in the Western Cape Province, South Africa. Are we in epidemiological transition? SAMJ. 2019;109(5).CrossRef
22.
Zurück zum Zitat Abdulla RY, Rice MA, Donauer S, Hicks KR, Poore D, Staat MA. Hepatitis A in internationally adopted children: screening for acute and previous infections. Pediatrics. 2010;126(5):e1039–e44.CrossRef Abdulla RY, Rice MA, Donauer S, Hicks KR, Poore D, Staat MA. Hepatitis A in internationally adopted children: screening for acute and previous infections. Pediatrics. 2010;126(5):e1039–e44.CrossRef
23.
Zurück zum Zitat Blanchi S, Chabasse D, Pichard E, Darviot E, de Gentile L. Post-international adoption medical follow-up at the Angers university hospital between 2009 and 2012. Med Mal Infect. 2014;44(2):69–75.CrossRef Blanchi S, Chabasse D, Pichard E, Darviot E, de Gentile L. Post-international adoption medical follow-up at the Angers university hospital between 2009 and 2012. Med Mal Infect. 2014;44(2):69–75.CrossRef
24.
Zurück zum Zitat Raabe VN, Sautter C, Chesney M, Eckerle JK, Howard CR, John CC. Hepatitis a screening for internationally adopted children from hepatitis A endemic countries. Clin Pediatr (Phila). 2014;53(1):31–7.CrossRef Raabe VN, Sautter C, Chesney M, Eckerle JK, Howard CR, John CC. Hepatitis a screening for internationally adopted children from hepatitis A endemic countries. Clin Pediatr (Phila). 2014;53(1):31–7.CrossRef
25.
Zurück zum Zitat Jablonka A, Solbach P, Wobse M, Manns MP, Schmidt RE, Wedemeyer H, et al. Seroprevalence of antibodies and antigens against hepatitis A-E viruses in refugees and asylum seekers in Germany in 2015. Eur J Gastroenterol Hepatol. 2017;29(8):939–45.CrossRef Jablonka A, Solbach P, Wobse M, Manns MP, Schmidt RE, Wedemeyer H, et al. Seroprevalence of antibodies and antigens against hepatitis A-E viruses in refugees and asylum seekers in Germany in 2015. Eur J Gastroenterol Hepatol. 2017;29(8):939–45.CrossRef
26.
Zurück zum Zitat Majori S, Baldo V, Tommasi I, Malizia M, Floreani A, Monteiro G, et al. Hepatitis A, B, and C infection in a community of sub-Saharan immigrants living in Verona (Italy). J Travel Med. 2008;15(5):323–7.CrossRef Majori S, Baldo V, Tommasi I, Malizia M, Floreani A, Monteiro G, et al. Hepatitis A, B, and C infection in a community of sub-Saharan immigrants living in Verona (Italy). J Travel Med. 2008;15(5):323–7.CrossRef
27.
Zurück zum Zitat Afegbua SL, Bugaje MA, Ahmad AA. Seroprevalence of hepatitis A virus infection among schoolchildren and adolescents in Kaduna, Nigeria. Trans R Soc Trop Med Hyg. 2013;107(10):627–30.CrossRef Afegbua SL, Bugaje MA, Ahmad AA. Seroprevalence of hepatitis A virus infection among schoolchildren and adolescents in Kaduna, Nigeria. Trans R Soc Trop Med Hyg. 2013;107(10):627–30.CrossRef
28.
Zurück zum Zitat Al-Aziz AMA, Awad MAM. Seroprevalence of hepatitis A virus antibodies among a sample of Egyptian children. East Mediterr Health J = La Revue De Sante De La Mediterranee Orientale = Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit. 2008;14(5):1028–35. Al-Aziz AMA, Awad MAM. Seroprevalence of hepatitis A virus antibodies among a sample of Egyptian children. East Mediterr Health J = La Revue De Sante De La Mediterranee Orientale = Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit. 2008;14(5):1028–35.
29.
Zurück zum Zitat Bonney JH, Osei-Kwasi M, Adiku TK, Barnor JS, Amesiya R, Kubio C, et al. Hospital-based surveillance for viral hemorrhagic fevers and hepatitides in Ghana. PLoS Negl Trop Dis. 2013;7(9):e2435.CrossRef Bonney JH, Osei-Kwasi M, Adiku TK, Barnor JS, Amesiya R, Kubio C, et al. Hospital-based surveillance for viral hemorrhagic fevers and hepatitides in Ghana. PLoS Negl Trop Dis. 2013;7(9):e2435.CrossRef
30.
Zurück zum Zitat Bouskraoui M, Bourrous M, Amine M. Prévalence des anticorps de l’hépatite A chez l’enfant dans la région de Marrakech. Prevalence of anti-hepatitis A virus antibodies in chidren in Marrakech. 2009;16:S132–S6. Bouskraoui M, Bourrous M, Amine M. Prévalence des anticorps de l’hépatite A chez l’enfant dans la région de Marrakech. Prevalence of anti-hepatitis A virus antibodies in chidren in Marrakech. 2009;16:S132–S6.
31.
Zurück zum Zitat Bourrous M, Drais G, Amine M, Adabbous A, Admou I, Bouskraoui M. Séroprévalence de l’hépatite virale A dans les ictères fébriles chez les enfants de la région de Marrakech, Maroc. Seroprevalence of the viral hepatitis A in febrile icteric children living in the area of Marrakech, Morroco. 2010;23(2):76–81. Bourrous M, Drais G, Amine M, Adabbous A, Admou I, Bouskraoui M. Séroprévalence de l’hépatite virale A dans les ictères fébriles chez les enfants de la région de Marrakech, Maroc. Seroprevalence of the viral hepatitis A in febrile icteric children living in the area of Marrakech, Morroco. 2010;23(2):76–81.
32.
Zurück zum Zitat El-Karaksy H, El-Sayed R, El-Raziky M, El-Koofy N, Mansour S. Cost-effectiveness of prescreening versus empirical vaccination for hepatitis A in Egyptian children with chronic liver disease. East Mediterr Health J. 2008;14(4):804–9.PubMed El-Karaksy H, El-Sayed R, El-Raziky M, El-Koofy N, Mansour S. Cost-effectiveness of prescreening versus empirical vaccination for hepatitis A in Egyptian children with chronic liver disease. East Mediterr Health J. 2008;14(4):804–9.PubMed
33.
Zurück zum Zitat Ellis RD, Dicko A, Sagara I, Kamate B, Guindo O, Niambele MB, et al. Short report: elevated levels of alanine aminotransferase and hepatitis A in the context of a pediatric malaria vaccine trial in a village in Mali. Am J Trop Med Hyg. 2008;79(6):980–2.CrossRef Ellis RD, Dicko A, Sagara I, Kamate B, Guindo O, Niambele MB, et al. Short report: elevated levels of alanine aminotransferase and hepatitis A in the context of a pediatric malaria vaccine trial in a village in Mali. Am J Trop Med Hyg. 2008;79(6):980–2.CrossRef
34.
Zurück zum Zitat Forbi JC, Agwale SM, Ndip LM, Esona MD. Genetic analysis of hepatitis A virus variants circulating among children presenting with acute diarrhea in Cameroon. J Med Virol. 2012;84(5):728–32.CrossRef Forbi JC, Agwale SM, Ndip LM, Esona MD. Genetic analysis of hepatitis A virus variants circulating among children presenting with acute diarrhea in Cameroon. J Med Virol. 2012;84(5):728–32.CrossRef
35.
Zurück zum Zitat Forbi JC, Iperepolu OH, Zungwe T, Agwale SM. Prevalence of Hepatitis B e Antigen in Chronic HBV Carriers in North-central Nigeria. J Health Popul Nutr. 2012;30(4):377–82.PubMedPubMedCentral Forbi JC, Iperepolu OH, Zungwe T, Agwale SM. Prevalence of Hepatitis B e Antigen in Chronic HBV Carriers in North-central Nigeria. J Health Popul Nutr. 2012;30(4):377–82.PubMedPubMedCentral
36.
Zurück zum Zitat Guenifi W, Laouamri S, Lacheheb A. Changes in prevalence of hepatitis A and associated factors in Setif-Algeria. Rev Epidemiol Sante Publique. 2017;65(6):437–42.CrossRef Guenifi W, Laouamri S, Lacheheb A. Changes in prevalence of hepatitis A and associated factors in Setif-Algeria. Rev Epidemiol Sante Publique. 2017;65(6):437–42.CrossRef
37.
Zurück zum Zitat Ikobah JM, Okpara HC, Ekanem EE, Udo JJ. Seroprevalence and predictors of hepatitis A infection in Nigerian children. Pan Afr Med J. 2015;20:120.CrossRef Ikobah JM, Okpara HC, Ekanem EE, Udo JJ. Seroprevalence and predictors of hepatitis A infection in Nigerian children. Pan Afr Med J. 2015;20:120.CrossRef
38.
Zurück zum Zitat Klouwenberg PK, Sasi P, Bashraheil M, Awuondo K, Bonten M, Berkley J, et al. Temporal Association of Acute Hepatitis A and Plasmodium falciparum Malaria in Children. PLoS One. 2011;6(7):1–5. Klouwenberg PK, Sasi P, Bashraheil M, Awuondo K, Bonten M, Berkley J, et al. Temporal Association of Acute Hepatitis A and Plasmodium falciparum Malaria in Children. PLoS One. 2011;6(7):1–5.
39.
Zurück zum Zitat Lopes T, Cable R, Pistorius C, Maponga T, Ijaz S, Preiser W, et al. Racial differences in seroprevalence of HAV and HEV in blood donors in the Western Cape, South Africa: a clue to the predominant HEV genotype? Epidemiol Infect. 2017;145(9):1910–2.CrossRef Lopes T, Cable R, Pistorius C, Maponga T, Ijaz S, Preiser W, et al. Racial differences in seroprevalence of HAV and HEV in blood donors in the Western Cape, South Africa: a clue to the predominant HEV genotype? Epidemiol Infect. 2017;145(9):1910–2.CrossRef
40.
Zurück zum Zitat Louati N, Feki L, Rekik H, Feki H, Chaabouni M, Hammami A, et al. Comparison of hepatitis A seroprevalence in blood donors in South Tunisia between 2000 and 2007. Arch Inst Pasteur Tunis. 2009;86(1-4):69–74.PubMed Louati N, Feki L, Rekik H, Feki H, Chaabouni M, Hammami A, et al. Comparison of hepatitis A seroprevalence in blood donors in South Tunisia between 2000 and 2007. Arch Inst Pasteur Tunis. 2009;86(1-4):69–74.PubMed
41.
Zurück zum Zitat Mphaka MR, Ntshiqa T, Majake L, Mugero C, Maphele A, Van Der Westhuizen M, et al. Hepatitis A virus outbreak in a compound in Tshwane district, Gauteng, South Africa: October 2014-March 2015. Int J Infect Dis. 2016;45:447–8.CrossRef Mphaka MR, Ntshiqa T, Majake L, Mugero C, Maphele A, Van Der Westhuizen M, et al. Hepatitis A virus outbreak in a compound in Tshwane district, Gauteng, South Africa: October 2014-March 2015. Int J Infect Dis. 2016;45:447–8.CrossRef
42.
Zurück zum Zitat Murchiri I, Okoth FA, Ngaira J, Tuei S. Seroprevalence of HAV, HBV, HCV, and HEV Among Acute Hepatitis Patients at Kenyatta National Hospital in Nairobi, Kenya. East Afr Med J. 2012;89(6):199–205. Murchiri I, Okoth FA, Ngaira J, Tuei S. Seroprevalence of HAV, HBV, HCV, and HEV Among Acute Hepatitis Patients at Kenyatta National Hospital in Nairobi, Kenya. East Afr Med J. 2012;89(6):199–205.
43.
Zurück zum Zitat Nagu TJ, Bakari M, Matee M. Hepatitis A, B and C viral co-infections among HIV-infected adults presenting for care and treatment at Muhimbili National Hospital in Dar es Salaam, Tanzania. BMC Public Health. 2008;8:416.CrossRef Nagu TJ, Bakari M, Matee M. Hepatitis A, B and C viral co-infections among HIV-infected adults presenting for care and treatment at Muhimbili National Hospital in Dar es Salaam, Tanzania. BMC Public Health. 2008;8:416.CrossRef
44.
Zurück zum Zitat Neffatti H, Lebraud P, Hottelet C, Gharbi J, Challouf T, Roque-Afonso AM. Southern Tunisia: A still high endemicity area for hepatitis A. PLoS One. 2017;12(4):e0175887.CrossRef Neffatti H, Lebraud P, Hottelet C, Gharbi J, Challouf T, Roque-Afonso AM. Southern Tunisia: A still high endemicity area for hepatitis A. PLoS One. 2017;12(4):e0175887.CrossRef
45.
Zurück zum Zitat Ogefere HO, Egbe CA. Seroprevalence of IgM antibodies to hepatitis A virus in at-risk group in Benin City, Nigeria. Libyan J Med. 2016;11:31290.CrossRef Ogefere HO, Egbe CA. Seroprevalence of IgM antibodies to hepatitis A virus in at-risk group in Benin City, Nigeria. Libyan J Med. 2016;11:31290.CrossRef
46.
Zurück zum Zitat Rabenau HF, Lennemann T, Kircher C, Gurtler L, Staszewski S, Preiser W, et al. Prevalence-and gender-specific immune response to opportunistic infections in HIV-infected patients in Lesotho. Sex Transm Dis. 2010;37(7):454–9.PubMed Rabenau HF, Lennemann T, Kircher C, Gurtler L, Staszewski S, Preiser W, et al. Prevalence-and gender-specific immune response to opportunistic infections in HIV-infected patients in Lesotho. Sex Transm Dis. 2010;37(7):454–9.PubMed
47.
Zurück zum Zitat Rezig D, Ouneissa R, Mhiri L, Mejri S, Haddad-Boubaker S, Ben Alaya N, et al. Séroprévalences des infections à hépatite A et E en Tunisie. Seroprevalences of hepatitis A and E infections in Tunisia. 2008;56(3):148–53. Rezig D, Ouneissa R, Mhiri L, Mejri S, Haddad-Boubaker S, Ben Alaya N, et al. Séroprévalences des infections à hépatite A et E en Tunisie. Seroprevalences of hepatitis A and E infections in Tunisia. 2008;56(3):148–53.
48.
Zurück zum Zitat Smahi MC, Rahmoun L, Ghomari SM, Benmansour S, Sendani H, Bendeddouche AS, et al. Seroprevalence and risk factors of hepatitis A among children in Tlemcen (north-west Algeria). Arch Pediatr. 2009;16(6):844–6.CrossRef Smahi MC, Rahmoun L, Ghomari SM, Benmansour S, Sendani H, Bendeddouche AS, et al. Seroprevalence and risk factors of hepatitis A among children in Tlemcen (north-west Algeria). Arch Pediatr. 2009;16(6):844–6.CrossRef
49.
Zurück zum Zitat Sule WF, Kajogbola AT, Adewumi MO. High prevalence of anti-hepatitis A virus immunoglobulin G antibody among healthcare facility attendees in Osogbo, Nigeria. J Immunoassay Immunochem. 2013;34(1):75–82.CrossRef Sule WF, Kajogbola AT, Adewumi MO. High prevalence of anti-hepatitis A virus immunoglobulin G antibody among healthcare facility attendees in Osogbo, Nigeria. J Immunoassay Immunochem. 2013;34(1):75–82.CrossRef
50.
Zurück zum Zitat Tantawy AA, Sallam TH, Ibrahim DM, Sallam MT, Ragab IA. Pathogenesis and prognosis of neutropenia in infants and children admitted in a university children hospital in Egypt. Pediatr Hematol Oncol. 2013;30(1):51–9.CrossRef Tantawy AA, Sallam TH, Ibrahim DM, Sallam MT, Ragab IA. Pathogenesis and prognosis of neutropenia in infants and children admitted in a university children hospital in Egypt. Pediatr Hematol Oncol. 2013;30(1):51–9.CrossRef
51.
Zurück zum Zitat Traoré KA, Rouamba H, Nébié Y, Sanou M, Traoré AS, Barro N, et al. Seroprevalence of fecal-oral transmitted hepatitis A and E virus antibodies in Burkina Faso. PLoS One. 2012;7(10):e48125-e.CrossRef Traoré KA, Rouamba H, Nébié Y, Sanou M, Traoré AS, Barro N, et al. Seroprevalence of fecal-oral transmitted hepatitis A and E virus antibodies in Burkina Faso. PLoS One. 2012;7(10):e48125-e.CrossRef
52.
Zurück zum Zitat Nainan OV, Xia G, Vaughan G, Margolis HS. Diagnosis of hepatitis a virus infection: a molecular approach. Clin Microbiol Rev. 2006;19(1):63–79.CrossRef Nainan OV, Xia G, Vaughan G, Margolis HS. Diagnosis of hepatitis a virus infection: a molecular approach. Clin Microbiol Rev. 2006;19(1):63–79.CrossRef
53.
Zurück zum Zitat Haddison E, Machingaidza S, Wiysonge C, Hussey G, Kagina B. An update on trends in the types and quality of childhood immunization researchoutputs from Africa 2011-2017: Mapping the evidence base. Vaccine. 2018. Haddison E, Machingaidza S, Wiysonge C, Hussey G, Kagina B. An update on trends in the types and quality of childhood immunization researchoutputs from Africa 2011-2017: Mapping the evidence base. Vaccine. 2018.
54.
Zurück zum Zitat World Health Organization. WHO position paper on hepatitis A vaccines. 2012. World Health Organization. WHO position paper on hepatitis A vaccines. 2012.
55.
Zurück zum Zitat Wang Z, Chen Y, Xie S, Lv H. Changing Epidemiological Characteristics of Hepatitis A in Zhejiang Province, China: Increased Susceptibility in Adults. PLoS One. 2016;11(4):e0153804.CrossRef Wang Z, Chen Y, Xie S, Lv H. Changing Epidemiological Characteristics of Hepatitis A in Zhejiang Province, China: Increased Susceptibility in Adults. PLoS One. 2016;11(4):e0153804.CrossRef
56.
Zurück zum Zitat Jacobsen KH. Globalization and the Changing Epidemiology of Hepatitis A Virus. Cold Spring Harb Perspect Med. 2018. Jacobsen KH. Globalization and the Changing Epidemiology of Hepatitis A Virus. Cold Spring Harb Perspect Med. 2018.
57.
Zurück zum Zitat Machingaidza S, Huddey GD, Wiysonge CS. Trends in the types and qualitiy of childhood immunisations research output from Africa 1970-2010: mapping the evidence. BMC Health Serv Res. 2014;14(52). Machingaidza S, Huddey GD, Wiysonge CS. Trends in the types and qualitiy of childhood immunisations research output from Africa 1970-2010: mapping the evidence. BMC Health Serv Res. 2014;14(52).
58.
Zurück zum Zitat Karim A, Coutsoudis A. Sero-epidemiology of hepatitis A in black South African children. S Afr Med J. 1993;83. Karim A, Coutsoudis A. Sero-epidemiology of hepatitis A in black South African children. S Afr Med J. 1993;83.
Metadaten
Titel
A systematic review of the epidemiology of hepatitis A in Africa
verfasst von
Jenna Patterson
Leila Abdullahi
Gregory D. Hussey
Rudzani Muloiwa
Benjamin M. Kagina
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2019
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4235-5

Weitere Artikel der Ausgabe 1/2019

BMC Infectious Diseases 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.