Skip to main content
Erschienen in: Journal of Digital Imaging 4/2020

10.02.2020 | Original Paper

A Weak and Semi-supervised Segmentation Method for Prostate Cancer in TRUS Images

verfasst von: Seokmin Han, Sung Il Hwang, Hak Jong Lee

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this research is to exploit a weak and semi-supervised deep learning framework to segment prostate cancer in TRUS images, alleviating the time-consuming work of radiologists to draw the boundary of the lesions and training the neural network on the data that do not have complete annotations. A histologic-proven benchmarking dataset of 102 case images was built and 22 images were randomly selected for evaluation. Some portion of the training images were strong supervised, annotated pixel by pixel. Using the strong supervised images, a deep learning neural network was trained. The rest of the training images with only weak supervision, which is just the location of the lesion, were fed to the trained network to produce the intermediate pixelwise labels for the weak supervised images. Then, we retrained the neural network on the all training images with the original labels and the intermediate labels and fed the training images to the retrained network to produce the refined labels. Comparing the distance of the center of mass of the refined labels and the intermediate labels to the weak supervision location, the closer one replaced the previous label, which could be considered as the label updates. After the label updates, test set images were fed to the retrained network for evaluation. The proposed method shows better result with weak and semi-supervised data than the method using only small portion of strong supervised data, although the improvement may not be as much as when the fully strong supervised dataset is used. In terms of mean intersection over union (mIoU), the proposed method reached about 0.6 when the ratio of the strong supervised data was 40%, about 2% decreased performance compared to that of 100% strong supervised case. The proposed method seems to be able to help to alleviate the time-consuming work of radiologists to draw the boundary of the lesions, and to train the neural network on the data that do not have complete annotations.
Literatur
3.
Zurück zum Zitat Jemal A, Center MM, DeSantis C, Ward EM: Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 19(8):1893–1907, 2010PubMedCrossRef Jemal A, Center MM, DeSantis C, Ward EM: Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 19(8):1893–1907, 2010PubMedCrossRef
5.
Zurück zum Zitat Llobet R, Perez-Cortes JC, Toselli AH, Juan A: Computeraided detection of prostate cancer. Int J Med Imformatics, 2007 Llobet R, Perez-Cortes JC, Toselli AH, Juan A: Computeraided detection of prostate cancer. Int J Med Imformatics, 2007
6.
Zurück zum Zitat Aus G, Abbou CC, Bolla M, Heidenreich A: EAU guidelines on prostate cancer. Eur Urol 48:546–551, 2005PubMedCrossRef Aus G, Abbou CC, Bolla M, Heidenreich A: EAU guidelines on prostate cancer. Eur Urol 48:546–551, 2005PubMedCrossRef
7.
Zurück zum Zitat Djavan B, Margreiter M: Biopsy standards for detection of prostate cancer. World J Urol 25:11–17, 2007PubMedCrossRef Djavan B, Margreiter M: Biopsy standards for detection of prostate cancer. World J Urol 25:11–17, 2007PubMedCrossRef
8.
Zurück zum Zitat Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG: Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 68(3):438–450, 2015PubMedCrossRef Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG: Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 68(3):438–450, 2015PubMedCrossRef
9.
Zurück zum Zitat Martinez C, DallOglio M, Nesrallah L et al.: Predictive value of psa velocity over early clinical and pathological parameters in patients with localized prostate cancer who undergo radical retropubic prostatectomy. Int Braz J Urol 30(1), 2004 Martinez C, DallOglio M, Nesrallah L et al.: Predictive value of psa velocity over early clinical and pathological parameters in patients with localized prostate cancer who undergo radical retropubic prostatectomy. Int Braz J Urol 30(1), 2004
10.
Zurück zum Zitat Ellis JH, Tempany C, Sarin MS, Gatsonis C, Rifkin MD, Mcneil BJ: MR imaging and sonography of early prostatic cancer : pathologic and imaging features that influence identification and diagnosis, AJR, 1994. Ellis JH, Tempany C, Sarin MS, Gatsonis C, Rifkin MD, Mcneil BJ: MR imaging and sonography of early prostatic cancer : pathologic and imaging features that influence identification and diagnosis, AJR, 1994.
11.
Zurück zum Zitat Huynen A, Giesen R et al.: Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 20(1), 1994 Huynen A, Giesen R et al.: Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. Ultrasound Med Biol 20(1), 1994
12.
Zurück zum Zitat Rosette J, Giesen R et al.: Automated analysis and interpretation of transrectal ultrasonography images in patients with prostatitis. Eur Urol 27(1):47–53, 1995PubMedCrossRef Rosette J, Giesen R et al.: Automated analysis and interpretation of transrectal ultrasonography images in patients with prostatitis. Eur Urol 27(1):47–53, 1995PubMedCrossRef
13.
Zurück zum Zitat Yfantis EA, Lazarakis T, Bebis G: On Cancer Recognition of Ultrasound Image, Computer Vision Beyond the Visible Spectrum: Methods and Applications, Procedings. IEEE Workshop on, 2000. Yfantis EA, Lazarakis T, Bebis G: On Cancer Recognition of Ultrasound Image, Computer Vision Beyond the Visible Spectrum: Methods and Applications, Procedings. IEEE Workshop on, 2000.
14.
Zurück zum Zitat Han SM, Lee JH, Choi JY: Computer-aided Prostate Cancer Detection using Texture Features and Clinical Features in Ultrasound Image. J Digit Imaging 21:121–133, 2008PubMedCentralCrossRef Han SM, Lee JH, Choi JY: Computer-aided Prostate Cancer Detection using Texture Features and Clinical Features in Ultrasound Image. J Digit Imaging 21:121–133, 2008PubMedCentralCrossRef
15.
Zurück zum Zitat Suk HI, Lee SW, Shen D, Alzheimer's Disease Neuroimaging Initiative: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101(0):569–582, 2014PubMedPubMedCentralCrossRef Suk HI, Lee SW, Shen D, Alzheimer's Disease Neuroimaging Initiative: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101(0):569–582, 2014PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Dalmış MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern-Mérida A: Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging 5, 2018 Dalmış MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern-Mérida A: Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging 5, 2018
17.
Zurück zum Zitat Wang J et al.: Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Sci Rep 6, 2016 Wang J et al.: Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning. Sci Rep 6, 2016
18.
Zurück zum Zitat Cheng JZ et al.: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep 6, 2016 Cheng JZ et al.: Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep 6, 2016
19.
Zurück zum Zitat Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong YK: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 62:7714–7728, 2017PubMedCrossRef Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong YK: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 62:7714–7728, 2017PubMedCrossRef
20.
Zurück zum Zitat Le MH, Chen J, Wang L, Wang Z, Liu W, Cheng KT, Yang X: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 62:6497–6514, 2017PubMedCrossRef Le MH, Chen J, Wang L, Wang Z, Liu W, Cheng KT, Yang X: Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 62:6497–6514, 2017PubMedCrossRef
21.
Zurück zum Zitat Tsehay Y, Lay N, Wang X, Kwak JT, Turkbey et al: Biopsy-guided learning with deep convolutional neural networks for Prostate Cancer detection on multiparametric MRI, Proceedings of 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017. Tsehay Y, Lay N, Wang X, Kwak JT, Turkbey et al: Biopsy-guided learning with deep convolutional neural networks for Prostate Cancer detection on multiparametric MRI, Proceedings of 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017.
22.
Zurück zum Zitat Anas EMA, Mousavi P, Abolmaesumi P: A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy. Med Image Anal 48:107–116, 2018PubMedCrossRef Anas EMA, Mousavi P, Abolmaesumi P: A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy. Med Image Anal 48:107–116, 2018PubMedCrossRef
23.
Zurück zum Zitat Wu F, Wang Z, Zhang Z, Yang Y, Luo J, Zhu W, Zhuang Y: Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation. IEEE Trans Big Data 1:109–122, 2015CrossRef Wu F, Wang Z, Zhang Z, Yang Y, Luo J, Zhu W, Zhuang Y: Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation. IEEE Trans Big Data 1:109–122, 2015CrossRef
24.
Zurück zum Zitat Papandreou G, Chen LC, Murphy KP, Yuille AL: Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), 2015. Papandreou G, Chen LC, Murphy KP, Yuille AL: Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), 2015.
25.
Zurück zum Zitat Wang Y, Liu J, Li Y, Lu H: Semi- and Weakly- Supervised Semantic Segmentation with Deep Convolutional Neural Networks, The 23rd ACM international conference, 2015. Wang Y, Liu J, Li Y, Lu H: Semi- and Weakly- Supervised Semantic Segmentation with Deep Convolutional Neural Networks, The 23rd ACM international conference, 2015.
26.
Zurück zum Zitat Neverova N, Wolf C, Nebout F: Taylor GW:Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning. Comp Vision Image Underst 164:56–67, 2017CrossRef Neverova N, Wolf C, Nebout F: Taylor GW:Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning. Comp Vision Image Underst 164:56–67, 2017CrossRef
27.
Zurück zum Zitat Shin SY, Lee S, Yun ID, Kim SM, Lee KM: Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Trans Med Imag 38:762–774, 2019CrossRef Shin SY, Lee S, Yun ID, Kim SM, Lee KM: Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Trans Med Imag 38:762–774, 2019CrossRef
28.
Zurück zum Zitat Lee J, Kim E, Lee S, Lee J, Yoon S:FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference, arXiv:1902.10421[cs.CV], 2019. Lee J, Kim E, Lee S, Lee J, Yoon S:FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference, arXiv:1902.10421[cs.CV], 2019.
29.
Zurück zum Zitat Souly N, Spampinato C, Shah M: Semi Supervised Semantic Segmentation Using Generative Adversarial Network, 2017 IEEE International Conference on Computer Vision (ICCV), 2017. Souly N, Spampinato C, Shah M: Semi Supervised Semantic Segmentation Using Generative Adversarial Network, 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
30.
Zurück zum Zitat Deng J et al: Imagenet: A large-scale hierarchical image database. Computer Vision and Pattern Recognition, IEEE Conference on CVPR 2009, 2009. Deng J et al: Imagenet: A large-scale hierarchical image database. Computer Vision and Pattern Recognition, IEEE Conference on CVPR 2009, 2009.
31.
Zurück zum Zitat Chen LC, Papandreou G, Schroff F, Adam H: Rethinking Atrous Convolution for Semantic Image Segmentation, arXiv: 1706.05587, 2017. Chen LC, Papandreou G, Schroff F, Adam H: Rethinking Atrous Convolution for Semantic Image Segmentation, arXiv: 1706.05587, 2017.
32.
Zurück zum Zitat Kingma DP, Ba J:Adam: A method for stochastic optimization, arXiv:1412.6980, 2014. Kingma DP, Ba J:Adam: A method for stochastic optimization, arXiv:1412.6980, 2014.
33.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A et al: Tensorflow: A system for large-scale machine learning, Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia, USA, 2016. Abadi M, Barham P, Chen J, Chen Z, Davis A et al: Tensorflow: A system for large-scale machine learning, Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia, USA, 2016.
Metadaten
Titel
A Weak and Semi-supervised Segmentation Method for Prostate Cancer in TRUS Images
verfasst von
Seokmin Han
Sung Il Hwang
Hak Jong Lee
Publikationsdatum
10.02.2020
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 4/2020
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-020-00323-3

Weitere Artikel der Ausgabe 4/2020

Journal of Digital Imaging 4/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.