Skip to main content
main-content

06.04.2018 | Original Article | Ausgabe 10/2018

European Journal of Nuclear Medicine and Molecular Imaging 10/2018

Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions

Zeitschrift:
European Journal of Nuclear Medicine and Molecular Imaging > Ausgabe 10/2018
Autoren:
Margarita Kirienko, Luca Cozzi, Alexia Rossi, Emanuele Voulaz, Lidija Antunovic, Antonella Fogliata, Arturo Chiti, Martina Sollini
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00259-018-3987-2) contains supplementary material, which is available to authorized users.
Margarita Kirienko and Luca Cozzi contributed equally to this work.

Abstract

Purpose

To evaluate the ability of CT and PET radiomics features to classify lung lesions as primary or metastatic, and secondly to differentiate histological subtypes of primary lung cancers.

Methods

A cohort of 534 patients with lung lesions were retrospectively studied. Radiomics texture features were extracted using the LIFEx package from semiautomatically segmented PET and CT images. Histology data were recorded in all patients. The patient cohort was divided into a training and a validation group and linear discriminant analysis (LDA) was performed to classify the lesions using both direct and backward stepwise methods. The robustness of the procedure was tested by repeating the entire process 100 times with different assignments to the training and validation groups. Scoring metrics included analysis of the receiver operating characteristic curves in terms of area under the curve (AUC), sensitivity, specificity and accuracy.

Results

Radiomics features extracted from CT and PET datasets were able to differentiate primary tumours from metastases in both the training and the validation group (AUCs 0.79 ± 0.03 and 0.70 ± 0.04, respectively, from the CT dataset; AUCs 0.92 ± 0.01 and 0.91 ± 0.03, respectively, from the PET dataset). The AUC cut-off thresholds identified by LDA using direct and backward elimination strategies were −0.79 ± 0.06 and −0.81 ± 0.08, respectively (CT dataset) and −0.69 ± 0.05 and −0.68 ± 0.04, respectively (PET dataset). For differentiation between primary subgroups based on CT features, the AUCs in the training and validation groups were 0.81 ± 0.02 and 0.69 ± 0.04 for adenocarcinoma (Adc) vs. squamous cell carcinoma (Sqc) or “Other”, 0.85 ± 0.02 and 0.70 ± 0.05 for Sqc vs. Adc or Other, and 0.77 ± 0.03 and 0.57 ± 0.05 for Other vs. Adc or Sqc. The same analyses for the PET data revealed AUCs of 0.90 ± 0.10 and 0.80 ± 0.04, 0.80 ± 0.02 and 0.61 ± 0.06, and 0.97 ± 0.01 and 0.88 ± 0.04, respectively.

Conclusion

PET radiomics features were able to differentiate between primary and metastatic lung lesions and showed the potential to identify primary lung cancer subtypes.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
ESM 1 (DOCX 22 kb)
259_2018_3987_MOESM1_ESM.docx
ESM 2 (XLS 853 kb)
259_2018_3987_MOESM2_ESM.xls
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2018

European Journal of Nuclear Medicine and Molecular Imaging 10/2018 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.