Skip to main content
Erschienen in: Malaria Journal 1/2015

Open Access 01.12.2015 | Research

Absence of association between Plasmodium falciparum small sub-unit ribosomal RNA gene mutations and in vitro decreased susceptibility to doxycycline

verfasst von: Tiphaine Gaillard, Nathalie Wurtz, Sandrine Houzé, Kanlaya Sriprawat, Chirapat Wangsing, Véronique Hubert, Jacques Lebras, François Nosten, Sébastien Briolant, Bruno Pradines, The French National Reference Centre for Imported Malaria Study Group

Erschienen in: Malaria Journal | Ausgabe 1/2015

Abstract

Background

Doxycycline is an antibiotic used in combination with quinine or artesunate for malaria treatment or alone for malaria chemoprophylaxis. Recently, one prophylactic failure has been reported, and several studies have highlighted in vitro doxycycline decreased susceptibility in Plasmodium falciparum isolates from different areas. The genetic markers that contribute to detecting and monitoring the susceptibility of P. falciparum to doxycycline, the pfmdt and pftetQ genes, have recently been identified. However, these markers are not sufficient to explain in vitro decreased susceptibility of P. falciparum to doxycycline. In this paper, the association between polymorphism of the small sub-unit ribosomal RNA apicoplastic gene pfssrRNA (PFC10_API0057) and in vitro susceptibilities of P. falciparum isolates to doxycycline were investigated.

Methods

Doxycycline IC50 determinations using the hypoxanthine uptake inhibition assay were performed on 178 African and Thai P. falciparum isolates. The polymorphism of pfssrRNA was investigated in these samples by standard PCR followed by sequencing.

Results

No point mutations were found in pfssrRNA in the Thai or African isolates, regardless of the determined IC50 values.

Conclusions

The pfssrRNA gene is not associated with in vitro decreased susceptibility of P. falciparum to doxycycline. Identifying new in vitro molecular markers associated with reduced susceptibility is needed, to survey the emergence of doxycycline resistance.

Background

Doxycycline is an effective anti-malarial prophylactic drug when administered as a monotherapy 1 day before, daily during, and for 4 weeks after return from travel to an area where malaria is endemic. Doxycycline is currently a recommended chemoprophylactic regimen for travellers visiting areas where malaria is endemic and has a high prevalence of chloroquine or multidrug resistance [13]. The World Health Organization also recommends doxycycline in combination with quinine or artesunate as the second-line treatment for uncomplicated Plasmodium falciparum malaria [2].
Most prophylactic failures of doxycycline against P. falciparum were associated with the use of inadequate, low doses or poor compliance [46]. However, resistance could also explain prophylactic failures with doxycycline. Cyclines resistance has been documented in Plasmodium berghei as a consequence of minocycline drug pressure in a P. berghei murine malaria model [7]. Recently, one prophylactic failure has been reported [8].
A Bayesian mixture modelling approach identified three different phenotypes (low, medium, and high doxycycline IC50 phenotypic groups) among P. falciparum African clinical isolates [9, 10]. Using 90 isolates from 14 African countries, it was demonstrated that increases in copy numbers of P. falciparum metabolite drug transporter gene (Pfmdt, PFE0825w) and P. falciparum GTPase TetQ gene (PfTetQ, PFL1710c) are associated with reduced susceptibility to doxycycline [11], and this association was later confirmed in African P. falciparum isolates [9]. In addition, isolates with PfTetQ KYNNNN motif repeats <3 are associated with in vitro reduced susceptibility to doxycycline and with a significantly higher probability of having an IC50 above the doxycycline resistance threshold of 35 µM (odds ratio of 15) [11, 12]. The isolate obtained from the patient with prophylactic resistance to doxycycline harboured two copies of pfmdt and two PfTetQ KYNNNN motif repeats [8], consistent with previous in vitro data [12].
However, some recent publications have demonstrated that these molecular markers were certainly not only encountered in cases of reduced susceptibility to doxycycline [13, 14] and were not associated with resistance in Thai isolates [14]. Therefore, it is necessary to investigate other hypotheses. Based on bacterial world, proteins homologue to those implicated in doxycycline resistance in bacteria were identified in silico in P. falciparum.
Indeed, cyclines bind to proteins S4, S7, S9, and S17 of the 30S small ribosomal sub-unit and various ribonucleic acids of the 16S ribosomal RNA, preventing the binding of aminoacyl-transfer RNA to site A of the ribosome and thus blocking the elongation step of translation in bacteria [15]. Specific mutations in genes coding these targets can confer resistance to tetracyclines in bacteria. However, no point mutation was found in small sub-unit plastid ribosomal homologue plasmodial genes in African isolates (pfrps7, pfrps9, and pfrps17, although S7, S9, and S17) [11]. It has been also shown that resistance to tetracycline was mediated by mutations in the 16S rRNA gene, particularly in Helicobacter pylori or in Propionibacterium acnes [1618]. An analogue of this gene exists in P. falciparum apicoplast, the small sub-unit ribosomal RNA gene, the pfssrRNA gene, (PFC10_API0057) [1922]. First, the pfssrRNA gene shares 58 and 62 % identities with the 16S rRNA gene of Propionibacterium acnes and Helicobacter pylori, respectively. Secondly, this gene belongs to the apicoplast, an organelle related to the chloroplast of plant cells that contains its own genome-encoding, prokaryote-like, ribosomal RNAs, tRNAs and some proteins [23]. Three studies confirmed the specific action of cyclines on the apicoplast of P. falciparum [2426]. A parasite exposed to 1 µM of doxycycline for 20 h presented during the next cycle (72 h), the inhibition of apicoplastic replication visualized by confocal fluorescence microscopy, electron microscopy and an analysis of the parasite transcriptome [24]. The most recently published study confirms the action of doxycycline on the apicoplast but in two stages, with an immediate toxic effect and a toxic effect measurable after cell division [25]. A proteomic approach confirmed the specific deregulation of proteins involved in apicoplast metabolism after doxycycline treatment [27].
Thus, the aim of this study was to identify specific point mutations in this plasmodial ribosomal gene, according to what is observed in other species, to determine whether this gene could be involved in reduced susceptibility to doxycycline. For this purpose, the apicoplastic pfssrRNA gene from the 89 African and 89 Thai P. falciparum isolates, belonging to phenotypic groups differing in doxycycline IC50 values and already analysed for pftetQ and pfmdt genes, was sequenced and analysed [9, 14].

Methods

Plasmodium falciparum isolates

A total of 89 African P. falciparum isolates, obtained at the French National Reference Centre for Imported Malaria, Hôpital Bichat, Paris, from patients hospitalized with malaria after having returned to France between January 2006 and December 2010, and 89 isolates obtained from the Shoklo Malaria Research Unit (Mae Sot, Thailand) from patients infected with P. falciparum from 2001 to 2010, were used. These isolates were previously tested to evaluate their pfmdt and pftetQ genes copy numbers [9, 14].
Informed consent was not required as the sampling procedures and testing are part of the French national recommendations for the care and surveillance of malaria.
Concerning the Thai isolates, written informed consent translated into the patient’s own language was obtained from each participant, whose signature was witnessed. The studies were approved by the Ethics Committees of the Faculty of Tropical Medicine, Mahidol University and Oxford University.

Amplification and sequencing of pfssrRNA gene

PfssrRNA (PFC10_API0057) was amplified by polymerase chain reaction (PCR) using the following primers: 5′-AGCTAATGGTGAGATTTGAACTCA-3′ (forward) and 5′-CGTCGTGAGACAGTTCGGTC-3′ (reverse) (Eurogentec, Angers, France), designed with the NCBI/Primer-BLAST online tool.
The reaction mixture included 2 µl of genomic DNA, 2.5 µl of 10× reaction buffer (Eurogentec), 0.5 µM of each primer, 200 µM of deoxynucleoside triphosphate mixture (dGTP, dATP, dTTP and dCTP) (Euromedex, Souffelweyersheim, France), and 1.5 mM of MgCl2 and 1.25 units of RedGoldStar® DNA polymerase (Eurogentec) in a final volume of 25 µL. The thermal cycler (T3 Biometra, Archamps, France) was programmed as follows: an initial 94 °C for 2 min followed by 40 cycles of 94 °C for 30 s, 55 °C for 30 s and 60 °C for 2 min, and a final extension step of 60 °C for 5 min. The PCR products were loaded on 1 % agarose gel containing 0.5 μg/mL ethidium bromide. Amplicons were purified using the QIAquick 96 PCR BioRobot Kit and an automated protocol on the BioRobot 8000 workstation (Qiagen, Courtaboeuf, France). The purified fragments were sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) using the following primers: 5′-ACTAGTGTATTTCGGTTAACAGCCG-3′ (forward), 5′-ACCCTTATCAAGAGTATGTTTTAACCAT-3′ (reverse) and Pf_SSU_rRNA_R1481 CTTAAGAACTTATTCACCGCTA (reverse). The sequence reaction products were purified using the BigDye XTerminator® Purification Kit (Applied Biosystems), in accordance with the manufacturer’s instructions. The purified products were sequenced using an ABI Prism 3100 analyser (Applied Biosystems), and the sequences were analysed using Vector NTI advance (TM) software (version 11, Invitrogen, Cergy Pontoise, France).

Results

In Helicobacter pylori, tetracycline resistance has not been associated with efflux or ribosomal protection proteins but rather attributed to mutations in the 16S rRNA-encoding genes that affect the binding site of tetracycline [1618]. Tetracycline resistance mediated by mutations in the 16S rRNA was first found in Propionibacterium acnes, and a mutation from G to C was reported at position 1058 (Escherichia coli numbering) in their 16S rRNA genes [17]. A triplet mutation in the same 16S rRNA domain (965–967; E. coli numbering) was also found [24, 2830] and is located in the primary tetracycline-binding site [1, 15]. However, the sequencing of pfssrRNA did not reveal a polymorphism in P. falciparum. There was no single nucleotide polymorphism in the pfssrRNA gene in either the 89 African isolates, regardless of the phenotypic group for doxycycline (group A of low doxycycline IC50 [mean IC50 = 3.88 µM; confident interval 95 % (CI 95 %) [3.39–4.37], no = 30], group B of moderate IC50 [mean IC50 = 16.97 µM; CI 95 % [16.45–17.49]; no = 30]) and group C of high IC50 [mean IC50 = 34.60 µM, CI 95 % [31.3–37.9], no = 29), or the 89 Thai isolates (group A [mean IC50 = 3.64 µM, CI 95 % [3.29–3.99], no = 30], group B [mean IC50 = 14.73 µM, CI 95 % [14.6–14.85], no = 30] and group C [mean IC50 = 28.94 µM, CI 95 % [26.51–31.37], no = 29]). No sequence polymorphism in the pfssrRNA gene was observed by comparison with the reference strain 3D7. This gene was not associated with reduced susceptibility to doxycycline in either African or Thai P. falciparum isolates and the small sub-unit ribosomal RNA seemed to be not a target for doxycycline.

Conclusions

The decreased susceptibility of P. falciparum to doxycycline is certainly multigenic. Pfmdt and pftetQ genes polymorphism and number of copies are involved partly to the decreased susceptibility. Intensive research into identifying in vitro markers associated with decreased susceptibility should allow survey of the emergence of doxycycline resistance. Another hypothesis to be explored is some apicoplastic genes, which could be involved in artemisinin resistance [31], such as arps10, encoding the apicoplast ribosomal protein S10 precursor, and fd, encoding the ferredoxin protein, a key component of the apicoplast electron transport chain.

Authors’ contributions

SB, FN, JL, and BP conceived and designed the experiments. KS and CW performed the evaluation of doxycycline IC50 in Mae Sot City, Thailand, using the isotopic method. SH and VH performed the evaluation of doxycycline IC50 in Paris, France, using the isotopic method. TG and NW performed the PCR, sequencing and sequence analyses of the pfssrRNA gene. TG, FN, SB and BP wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

This study was supported by the Délégation Générale pour l’Armement (Grant number 10CO405) and the Institut national de Veille sanitaire (CNR paludisme). The Shoklo Malaria Research Unit is part of the Mahidol Oxford University Research Unit, supported by The Wellcome Trust of Great Britain.
French National Reference Centre for Imported Malaria Study Group Ahmed Aboubacar, Patrice Agnamey, Faïza Ajana, Roger Amira, Nicolas Argy, Sonia Baumard, Pauline Bellanger, Dieudonné Bemba, Jean Beytout, Marie-Laure Bigel, Martine Bloch, Richard Bonnet, Alice Borel, Olivier Bouchaud, Catherine Branger, Fabrice Bruneel, Monique Cambon, Daniel Camus, Enrique Casalino, Jérome Clain, Sandrine Cojean, Bernadette Cuisenier B, Ludovic De Gentile, Jean-Marie Delarbre, Anne Delaval, Rémy Durand, Emmanuel Dutoit, Odile Eloy, Jean-François Faucher, Albert Faye, Odile Fenneteau, Denis Filisetti, Christian Fulleda, Nadine Godineau, Frédéric Grenouillet, Jean-Pierre Hurst, Houria Ichou, Elizabeth Klein E, Sylvie Lariven, Magalie Lefevre, Monique Lemoine, Olivier Lesens, Caroline Lohmann, Daniel Lusina, Marie-Claude Machouart, Robert Mary, Sophie Matheron, Denis Mechali, Audrey Merrens, Laurence Millon, Sébastien Monnier, Emmanuel Mortier, François Moussel, Olivier Pageot, Nathalie Parez, Pierre Patoz, Alexander Pfaff, Marc Pihet, Jean-Etienne Pilo, Isabelle Poilane, Denis Pons, Marie Poupart, Marc Prevel, Lauren Pull, Christophe Rapp, Alexandre Rivier, Emily Ronez, Daniel Rotten, Anne-Laure Simonet, Jean-Yves Siriez, Christophe Strady, Audrey Therby, Michel Thibault, Maxime Thouvenin, Dominique Toubas.

Compliance with ethical guidelines

Competing interests The authors have declared that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.PubMedCentralCrossRefPubMed Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat World Health Organization. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2011. World Health Organization. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2011.
3.
Zurück zum Zitat Institut National de Veille Sanitaire. Recommandations sanitaires pour les voyageurs, 2015. BEH. 2015;21–22:361–421. Institut National de Veille Sanitaire. Recommandations sanitaires pour les voyageurs, 2015. BEH. 2015;21–22:361–421.
4.
Zurück zum Zitat Shanks GD, Edstein MD, Suriyamongkol V, Timsaad S, Webster HK. Malaria chemoprophylaxis using proguanil/dapsone combinations on the Thai–Cambodian border. Am J Trop Med Hyg. 1992;46:643–8.PubMed Shanks GD, Edstein MD, Suriyamongkol V, Timsaad S, Webster HK. Malaria chemoprophylaxis using proguanil/dapsone combinations on the Thai–Cambodian border. Am J Trop Med Hyg. 1992;46:643–8.PubMed
5.
Zurück zum Zitat Pang L, Limsomwong N, Singharaj P. Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline. J Infect Dis. 1988;158:1124–7.CrossRefPubMed Pang L, Limsomwong N, Singharaj P. Prophylactic treatment of vivax and falciparum malaria with low-dose doxycycline. J Infect Dis. 1988;158:1124–7.CrossRefPubMed
6.
Zurück zum Zitat Wallace MR, Sharp TW, Smoak B, Iriye C, Rozmajzl P, Thornton SA, et al. Malaria among United States troops in Somalia. Am J Med. 1996;100:49–55.CrossRefPubMed Wallace MR, Sharp TW, Smoak B, Iriye C, Rozmajzl P, Thornton SA, et al. Malaria among United States troops in Somalia. Am J Med. 1996;100:49–55.CrossRefPubMed
7.
Zurück zum Zitat Jacobs RL, Koontz LC. Plasmodium berghei: development of resistance to clindamycin and minocycline in mice. Exp Parasitol. 1976;40:116–23.CrossRefPubMed Jacobs RL, Koontz LC. Plasmodium berghei: development of resistance to clindamycin and minocycline in mice. Exp Parasitol. 1976;40:116–23.CrossRefPubMed
8.
Zurück zum Zitat Madamet M, Gaillard T, Velut G, Ficko C, Houzé P, Bylicki C, et al. Malaria prophylactic failure with doxycycline. Emerg Infect Dis. 2015;21:1485–6.PubMedCentralCrossRefPubMed Madamet M, Gaillard T, Velut G, Ficko C, Houzé P, Bylicki C, et al. Malaria prophylactic failure with doxycycline. Emerg Infect Dis. 2015;21:1485–6.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Gaillard T, Briolant S, Houzé S, Baragatti M, Wurtz N, Hubert V, et al. PftetQ and pfmdt copy numbers as predictive molecular markers of decreased ex vivo doxycycline susceptibility in imported Plasmodium falciparum malaria. Malar J. 2013;12:414.PubMedCentralCrossRefPubMed Gaillard T, Briolant S, Houzé S, Baragatti M, Wurtz N, Hubert V, et al. PftetQ and pfmdt copy numbers as predictive molecular markers of decreased ex vivo doxycycline susceptibility in imported Plasmodium falciparum malaria. Malar J. 2013;12:414.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Briolant S, Baragatti M, Parola P, Simon F, Tall A, Sokhna C, et al. Multinormal in vitro distribution model suitable for the distribution of Plasmodium falciparum chemosusceptibility to doxycycline. Antimicrob Agents Chemother. 2009;53:688–95.PubMedCentralCrossRefPubMed Briolant S, Baragatti M, Parola P, Simon F, Tall A, Sokhna C, et al. Multinormal in vitro distribution model suitable for the distribution of Plasmodium falciparum chemosusceptibility to doxycycline. Antimicrob Agents Chemother. 2009;53:688–95.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Briolant S, Wurtz N, Zettor A, Rogier C, Pradines B. Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J Infect Dis. 2010;201:153–9.CrossRefPubMed Briolant S, Wurtz N, Zettor A, Rogier C, Pradines B. Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J Infect Dis. 2010;201:153–9.CrossRefPubMed
12.
Zurück zum Zitat Achieng AO, Ingasia LA, Juma DW, Cheruiyot AC, Okudo CA, Yeda RA, et al. Doxycycline reduced in vitro susceptibility in Plasmodium falciparum Kenyan field isolates is associated with PftetQ KYNNNN sequence polymorphism. Antimicrob Agents Chemother. 2014;58:5894–9.PubMedCentralCrossRefPubMed Achieng AO, Ingasia LA, Juma DW, Cheruiyot AC, Okudo CA, Yeda RA, et al. Doxycycline reduced in vitro susceptibility in Plasmodium falciparum Kenyan field isolates is associated with PftetQ KYNNNN sequence polymorphism. Antimicrob Agents Chemother. 2014;58:5894–9.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Gaillard T, Fall B, Tall A, Wurtz N, Diatta B, Lavina M, et al. Absence of association between ex vivo susceptibility to doxycycline and pftetQ and pfmdt copy numbers in Plasmodium falciparum isolates from Dakar, Senegal. Clin Microbiol Infect. 2012;18:238–40.CrossRef Gaillard T, Fall B, Tall A, Wurtz N, Diatta B, Lavina M, et al. Absence of association between ex vivo susceptibility to doxycycline and pftetQ and pfmdt copy numbers in Plasmodium falciparum isolates from Dakar, Senegal. Clin Microbiol Infect. 2012;18:238–40.CrossRef
14.
Zurück zum Zitat Gaillard T, Sriprawat K, Briolant S, Wangsing C, Wurtz N, Baragatti M, et al. Molecular markers and in vitro susceptibility to doxycycline in Plasmodium falciparum isolates from Thailand. Antimicrob Agents Chemother. 2015;59:5080–3.CrossRefPubMed Gaillard T, Sriprawat K, Briolant S, Wangsing C, Wurtz N, Baragatti M, et al. Molecular markers and in vitro susceptibility to doxycycline in Plasmodium falciparum isolates from Thailand. Antimicrob Agents Chemother. 2015;59:5080–3.CrossRefPubMed
15.
Zurück zum Zitat Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001;20:1829–39.PubMedCentralCrossRefPubMed Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001;20:1829–39.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Gerrits MM, de Zoete MR, Arents NLA, Kuipers EJ, Kusters JG. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother. 2002;46:2996–3000.PubMedCentralCrossRefPubMed Gerrits MM, de Zoete MR, Arents NLA, Kuipers EJ, Kusters JG. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother. 2002;46:2996–3000.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Ross JI, Eady EA, Cove JH, Cunliffe WJ. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother. 1998;42:1702–5.PubMedCentralPubMed Ross JI, Eady EA, Cove JH, Cunliffe WJ. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother. 1998;42:1702–5.PubMedCentralPubMed
18.
Zurück zum Zitat Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol. 2002;184:2131–40.PubMedCentralCrossRefPubMed Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol. 2002;184:2131–40.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Feagin JE. The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol. 1992;52:145–8.CrossRefPubMed Feagin JE. The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol. 1992;52:145–8.CrossRefPubMed
20.
Zurück zum Zitat Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ. Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res. 1992;20:879–87.PubMedCentralCrossRefPubMed Feagin JE, Werner E, Gardner MJ, Williamson DH, Wilson RJ. Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res. 1992;20:879–87.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Goodman CD, Su V, McFadden GI. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 2007;152:181–91.CrossRefPubMed Goodman CD, Su V, McFadden GI. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol. 2007;152:181–91.CrossRefPubMed
22.
Zurück zum Zitat Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother. 2007;51:3485–90.PubMedCentralCrossRefPubMed Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother. 2007;51:3485–90.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2006;50:3124–31.PubMedCentralCrossRefPubMed Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother. 2006;50:3124–31.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature. 1997;390:407–9.CrossRefPubMed Fichera ME, Roos DS. A plastid organelle as a drug target in apicomplexan parasites. Nature. 1997;390:407–9.CrossRefPubMed
25.
Zurück zum Zitat Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9:1001138.CrossRef Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9:1001138.CrossRef
26.
Zurück zum Zitat Clyde DF, Miller RM, DuPont HL, Hornick RB. Antimalarial effects of tetracyclines in man. J Trop Med Hyg. 1971;74:238–42.PubMed Clyde DF, Miller RM, DuPont HL, Hornick RB. Antimalarial effects of tetracyclines in man. J Trop Med Hyg. 1971;74:238–42.PubMed
27.
Zurück zum Zitat Briolant S, Almeras L, Belghazi M, Boucomont-Chapeaublanc E, Wurtz N, Fontaine A, et al. Plasmodium falciparum proteome changes in response to doxycycline treatment. Malar J. 2010;9:141.PubMedCentralCrossRefPubMed Briolant S, Almeras L, Belghazi M, Boucomont-Chapeaublanc E, Wurtz N, Fontaine A, et al. Plasmodium falciparum proteome changes in response to doxycycline treatment. Malar J. 2010;9:141.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Trieber CA, Burkhardt N, Nierhaus KH, Taylor DE. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol Chem. 1998;379:847–55.CrossRefPubMed Trieber CA, Burkhardt N, Nierhaus KH, Taylor DE. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol Chem. 1998;379:847–55.CrossRefPubMed
29.
Zurück zum Zitat Dailidiene D, Bertoli MT, Miciuleviciene J, Mukhopadhyay AK, Dailide G, Pascasio MA, et al. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob Agents Chemother. 2002;46:3940–6.PubMedCentralCrossRefPubMed Dailidiene D, Bertoli MT, Miciuleviciene J, Mukhopadhyay AK, Dailide G, Pascasio MA, et al. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob Agents Chemother. 2002;46:3940–6.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Ribeiro ML, Gerrits MM, Benvengo YHB, Berning M, Godoy APO, Kuipers EJ, et al. Detection of high-level tetracycline resistance in clinical isolates of Helicobacter pylori using PCR-RFLP. FEMS Immunol Med Microbiol. 2004;40:57–61.CrossRefPubMed Ribeiro ML, Gerrits MM, Benvengo YHB, Berning M, Godoy APO, Kuipers EJ, et al. Detection of high-level tetracycline resistance in clinical isolates of Helicobacter pylori using PCR-RFLP. FEMS Immunol Med Microbiol. 2004;40:57–61.CrossRefPubMed
31.
Zurück zum Zitat Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.PubMedCentralCrossRefPubMed Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.PubMedCentralCrossRefPubMed
Metadaten
Titel
Absence of association between Plasmodium falciparum small sub-unit ribosomal RNA gene mutations and in vitro decreased susceptibility to doxycycline
verfasst von
Tiphaine Gaillard
Nathalie Wurtz
Sandrine Houzé
Kanlaya Sriprawat
Chirapat Wangsing
Véronique Hubert
Jacques Lebras
François Nosten
Sébastien Briolant
Bruno Pradines
The French National Reference Centre for Imported Malaria Study Group
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2015
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0878-x

Weitere Artikel der Ausgabe 1/2015

Malaria Journal 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.