Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 12/2018

11.08.2018 | Original Article

Accuracy assessment of wireless transponder tracking in the operating room environment

verfasst von: Roeland Eppenga, Koert Kuhlmann, Theo Ruers, Jasper Nijkamp

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To evaluate the applicability of the Calypso® wireless transponder tracking system (Varian Medical Systems Inc., USA) for real-time tumor motion tracking during surgical procedures on tumors in non-rigid target areas. An accuracy assessment was performed for an extended electromagnetic field of view (FoV) of 27.5 × 27.5 × 22.5 cm (which included the standard FoV of 14 × 14 × 19 cm) in which 5DOF wireless Beacon® transponders can be tracked.

Methods

Using a custom-made measurement setup, we assessed single transponder relative accuracy, absolute accuracy and jitter throughout the extended FoV at 1440 locations interspaced with 2.5 cm in each orthogonal direction. The NDI Polaris Spectra optical tracking system (OTS) was used as a reference. Measurements were taken in a room without surrounding distorting factors and repeated in an operating room (OR). In the OR, the influence of a carbon fiber and regular stainless steel OR tabletop was investigated.

Results

The calibration of the OTS and transponder system resulted in an average root-mean-square error (RMSE) vector of 0.03 cm. For both the standard and extended FoV, all accuracy measures were dependent on transponder to tracking array (TA) distances and the absolute accuracy was also dependent on TA to OR tabletop distances. This latter influence was reproducible, and after calibrating this, the residual error was below 0.1 cm RMSE within the entire standard FoV. Within the extended FoV, this residual RMSE did not exceed 0.1 cm for transponder to TA distances up to 25 cm.

Conclusion

This study shows that transponder tracking is promising for accurate tumor tracking in the operating room. This applies when using the standard FoV, but also when using the extended FoV up to 25 cm above the TA, substantially increasing flexibility.
Literatur
1.
Zurück zum Zitat Senft C, Ulrich CT, Seifert V, Gasser T (2010) Intraoperative magnetic resonance imaging in the surgical treatment of cerebral metastases. J Surg Oncol 101:436–441PubMed Senft C, Ulrich CT, Seifert V, Gasser T (2010) Intraoperative magnetic resonance imaging in the surgical treatment of cerebral metastases. J Surg Oncol 101:436–441PubMed
2.
Zurück zum Zitat Ochs BG, Schreiner AJ, de Zwart PM, Stockle U, Gonser CE (2016) Computer-assisted navigation is beneficial both in primary and revision surgery with modular rotating-hinge knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24:64–73CrossRef Ochs BG, Schreiner AJ, de Zwart PM, Stockle U, Gonser CE (2016) Computer-assisted navigation is beneficial both in primary and revision surgery with modular rotating-hinge knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 24:64–73CrossRef
3.
Zurück zum Zitat Lango T, Tangen GA, Marvik R, Ystgaard B, Yavuz Y, Kaspersen JH, Solberg OV, Hernes TA (2008) Navigation in laparoscopy—prototype research platform for improved image-guided surgery. Minim Invasive Ther Allied Technol 17:17–33CrossRef Lango T, Tangen GA, Marvik R, Ystgaard B, Yavuz Y, Kaspersen JH, Solberg OV, Hernes TA (2008) Navigation in laparoscopy—prototype research platform for improved image-guided surgery. Minim Invasive Ther Allied Technol 17:17–33CrossRef
4.
Zurück zum Zitat Aschendorff A, Maier W, Jaekel K, Wesarg T, Arndt S, Laszig R, Voss P, Metzger M, Schulze D (2009) Radiologically assisted navigation in cochlear implantation for X-linked deafness malformation. Cochlear Implant Int 10(Suppl 1):14–18CrossRef Aschendorff A, Maier W, Jaekel K, Wesarg T, Arndt S, Laszig R, Voss P, Metzger M, Schulze D (2009) Radiologically assisted navigation in cochlear implantation for X-linked deafness malformation. Cochlear Implant Int 10(Suppl 1):14–18CrossRef
5.
Zurück zum Zitat Galloway RL, Herrell SD, Miga MI (2012) Image-guided abdominal surgery and therapy delivery. J Healthc Eng 3:203–228CrossRef Galloway RL, Herrell SD, Miga MI (2012) Image-guided abdominal surgery and therapy delivery. J Healthc Eng 3:203–228CrossRef
6.
Zurück zum Zitat Simpson AL, Kingham TP (2016) Current evidence in image-guided liver surgery. J Gastrointest Surg 20:1265–1269CrossRef Simpson AL, Kingham TP (2016) Current evidence in image-guided liver surgery. J Gastrointest Surg 20:1265–1269CrossRef
7.
Zurück zum Zitat Kingham TP, Scherer MA, Neese BW, Clements LW, Stefansic JD, Jarnagin WR (2012) Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB 14:594–603CrossRef Kingham TP, Scherer MA, Neese BW, Clements LW, Stefansic JD, Jarnagin WR (2012) Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB 14:594–603CrossRef
8.
Zurück zum Zitat Peterhans M, vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, Weber S (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot 7:7–16CrossRef Peterhans M, vom Berg A, Dagon B, Inderbitzin D, Baur C, Candinas D, Weber S (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot 7:7–16CrossRef
9.
Zurück zum Zitat Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73:896–900CrossRef Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD (2009) Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73:896–900CrossRef
10.
Zurück zum Zitat Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Watayo Y, Yagawa Y, Uemura S, Tsuchiya H, Azuma T (2010) Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci 17:629–636CrossRef Sugimoto M, Yasuda H, Koda K, Suzuki M, Yamazaki M, Tezuka T, Kosugi C, Higuchi R, Watayo Y, Yagawa Y, Uemura S, Tsuchiya H, Azuma T (2010) Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci 17:629–636CrossRef
11.
Zurück zum Zitat Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J (2014) Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr 3:73–81PubMedPubMedCentral Soler L, Nicolau S, Pessaux P, Mutter D, Marescaux J (2014) Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surg Nutr 3:73–81PubMedPubMedCentral
12.
Zurück zum Zitat Suwelack S, Rohl S, Bodenstedt S, Reichard D, Dillmann R, dos Santos T, Maier-Hein L, Wagner M, Wunscher J, Kenngott H, Muller BP, Speidel S (2014) Physics-based shape matching for intraoperative image guidance. Med Phys 41:111901CrossRef Suwelack S, Rohl S, Bodenstedt S, Reichard D, Dillmann R, dos Santos T, Maier-Hein L, Wagner M, Wunscher J, Kenngott H, Muller BP, Speidel S (2014) Physics-based shape matching for intraoperative image guidance. Med Phys 41:111901CrossRef
13.
Zurück zum Zitat Collins JA, Weis JA, Heiselman JS, Clements LW, Simpson AL, Jarnagin WR, Miga MI (2017) Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE Trans Med Imaging 36:1502–1510CrossRef Collins JA, Weis JA, Heiselman JS, Clements LW, Simpson AL, Jarnagin WR, Miga MI (2017) Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE Trans Med Imaging 36:1502–1510CrossRef
14.
Zurück zum Zitat Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, Jarnagin WR, Miga MI (2014) A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans Med Imaging 33:147–158CrossRef Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, Jarnagin WR, Miga MI (2014) A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans Med Imaging 33:147–158CrossRef
15.
Zurück zum Zitat Wild E, Teber D, Schmid D, Simpfendorfer T, Muller M, Baranski AC, Kenngott H, Kopka K, Maier-Hein L (2016) Robust augmented reality guidance with fluorescent markers in laparoscopic surgery. Int J Comput Assist Radiol Surg 11:899–907CrossRef Wild E, Teber D, Schmid D, Simpfendorfer T, Muller M, Baranski AC, Kenngott H, Kopka K, Maier-Hein L (2016) Robust augmented reality guidance with fluorescent markers in laparoscopic surgery. Int J Comput Assist Radiol Surg 11:899–907CrossRef
16.
Zurück zum Zitat Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine–a review of technology, validation, and applications. IEEE Trans Med Imaging 33:1702–1725CrossRef Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L (2014) Electromagnetic tracking in medicine–a review of technology, validation, and applications. IEEE Trans Med Imaging 33:1702–1725CrossRef
17.
Zurück zum Zitat Wagner M, Gondan M, Zollner C, Wunscher JJ, Nickel F, Albala L, Groch A, Suwelack S, Speidel S, Maier-Hein L, Muller-Stich BP, Kenngott HG (2016) Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study. Surg Endosc 30:495–503CrossRef Wagner M, Gondan M, Zollner C, Wunscher JJ, Nickel F, Albala L, Groch A, Suwelack S, Speidel S, Maier-Hein L, Muller-Stich BP, Kenngott HG (2016) Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study. Surg Endosc 30:495–503CrossRef
18.
Zurück zum Zitat Ungi T, Gauvin G, Lasso A, Yeo CT, Pezeshki P, Vaughan T, Carter K, Rudan J, Engel CJ, Fichtinger G (2016) Navigated breast tumor excision using electromagnetically tracked ultrasound and surgical instruments. IEEE Trans Biomed Eng 63:600–606CrossRef Ungi T, Gauvin G, Lasso A, Yeo CT, Pezeshki P, Vaughan T, Carter K, Rudan J, Engel CJ, Fichtinger G (2016) Navigated breast tumor excision using electromagnetically tracked ultrasound and surgical instruments. IEEE Trans Biomed Eng 63:600–606CrossRef
19.
Zurück zum Zitat Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M 3rd, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006) Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 65:528–534CrossRef Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M 3rd, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006) Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 65:528–534CrossRef
20.
Zurück zum Zitat Zhu M, Bharat S, Michalski JM, Gay HA, Hou WH, Parikh PJ (2013) Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy. Int J Radiat Oncol Biol Phys 85:1038–1044CrossRef Zhu M, Bharat S, Michalski JM, Gay HA, Hou WH, Parikh PJ (2013) Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy. Int J Radiat Oncol Biol Phys 85:1038–1044CrossRef
21.
Zurück zum Zitat Zhang P, Hunt M, Happersett L, Yang J, Zelefsky M, Mageras G (2013) Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy. Phys Med Biol 58:7803–7813CrossRef Zhang P, Hunt M, Happersett L, Yang J, Zelefsky M, Mageras G (2013) Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy. Phys Med Biol 58:7803–7813CrossRef
22.
Zurück zum Zitat Sawant A, Smith RL, Venkat RB, Santanam L, Cho B, Poulsen P, Cattell H, Newell LJ, Parikh P, Keall PJ (2009) Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking. Int J Radiat Oncol Biol Phys 74:575–582CrossRef Sawant A, Smith RL, Venkat RB, Santanam L, Cho B, Poulsen P, Cattell H, Newell LJ, Parikh P, Keall PJ (2009) Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking. Int J Radiat Oncol Biol Phys 74:575–582CrossRef
23.
Zurück zum Zitat Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098CrossRef Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098CrossRef
24.
Zurück zum Zitat Sonnenday CJ, Kaufman HS (2003) Use of an implantable marker for rapid intraoperative localization of nonpalpable tumors: a pilot study in a swine colorectal model. Surg Endosc 17:1927–1931CrossRef Sonnenday CJ, Kaufman HS (2003) Use of an implantable marker for rapid intraoperative localization of nonpalpable tumors: a pilot study in a swine colorectal model. Surg Endosc 17:1927–1931CrossRef
25.
Zurück zum Zitat Nakamoto M, Ukimura O, Gill IS, Mahadevan A, Miki T, Hashizume M, Sato Y (2008) Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. MIAR 5128:359–366 Nakamoto M, Ukimura O, Gill IS, Mahadevan A, Miki T, Hashizume M, Sato Y (2008) Realtime organ tracking for endoscopic augmented reality visualization using miniature wireless magnetic tracker. MIAR 5128:359–366
26.
Zurück zum Zitat Janssen N, Eppenga R, Peeters MV, van Duijnhoven F, Oldenburg H, van der Hage J, Rutgers E, Sonke JJ, Kuhlmann K, Ruers T, Nijkamp J (2018) Real-time wireless tumor tracking during breast conserving surgery. Int J Comput Assist Radiol Surg 13:531–539CrossRef Janssen N, Eppenga R, Peeters MV, van Duijnhoven F, Oldenburg H, van der Hage J, Rutgers E, Sonke JJ, Kuhlmann K, Ruers T, Nijkamp J (2018) Real-time wireless tumor tracking during breast conserving surgery. Int J Comput Assist Radiol Surg 13:531–539CrossRef
27.
Zurück zum Zitat Nafis C, Jensen V, Von Jako R (2008) Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables. Med Imaging 6918(691820):15 Nafis C, Jensen V, Von Jako R (2008) Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables. Med Imaging 6918(691820):15
28.
Zurück zum Zitat Franz AM, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, Nill S, Birkfellner W, Maier-Hein L (2014) Standardized accuracy assessment of the calypso wireless transponder tracking system. Phys Med Biol 59:6797–6810CrossRef Franz AM, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, Nill S, Birkfellner W, Maier-Hein L (2014) Standardized accuracy assessment of the calypso wireless transponder tracking system. Phys Med Biol 59:6797–6810CrossRef
29.
Zurück zum Zitat Wen J (2010) Electromagnetic tracking for medical imaging. All Theses and Dissertations (ETDs) Paper 469, Washington University, Saint Louis Wen J (2010) Electromagnetic tracking for medical imaging. All Theses and Dissertations (ETDs) Paper 469, Washington University, Saint Louis
30.
Zurück zum Zitat Balter JM, Wright JN, Newell LJ, Friemel B, Dimmer S, Cheng Y, Wong J, Vertatschitsch E, Mate TP (2005) Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys 61:933–937CrossRef Balter JM, Wright JN, Newell LJ, Friemel B, Dimmer S, Cheng Y, Wong J, Vertatschitsch E, Mate TP (2005) Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys 61:933–937CrossRef
31.
Zurück zum Zitat Elfring R, de la Fuente M, Radermacher K (2010) Assessment of optical localizer accuracy for computer aided surgery systems. Comput Aided Surg 15:1–12CrossRef Elfring R, de la Fuente M, Radermacher K (2010) Assessment of optical localizer accuracy for computer aided surgery systems. Comput Aided Surg 15:1–12CrossRef
32.
Zurück zum Zitat Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002) Evaluation of a miniature electromagnetic position tracker. Med Phys 29:2205–2212CrossRef Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002) Evaluation of a miniature electromagnetic position tracker. Med Phys 29:2205–2212CrossRef
33.
Zurück zum Zitat Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:2527–2537CrossRef Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61:2527–2537CrossRef
34.
Zurück zum Zitat Tukey JW (1977) Exploratory data analysis. Pearson, Don Mills Tukey JW (1977) Exploratory data analysis. Pearson, Don Mills
35.
Zurück zum Zitat Nijkamp J, Schermers B, Schmitz S, de Jonge S, Kuhlmann K, van der Heijden F, Sonke JJ, Ruers T (2016) Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions. Int J Comput Assist Radiol Surg 11:1487–1498CrossRef Nijkamp J, Schermers B, Schmitz S, de Jonge S, Kuhlmann K, van der Heijden F, Sonke JJ, Ruers T (2016) Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions. Int J Comput Assist Radiol Surg 11:1487–1498CrossRef
36.
Zurück zum Zitat Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic EM tracking accuracy of surgical navigation tools. Proc SPIE Int Soc Opt Eng 6141:152–167 Nafis C, Jensen V, Beauregard L, Anderson P (2006) Method for estimating dynamic EM tracking accuracy of surgical navigation tools. Proc SPIE Int Soc Opt Eng 6141:152–167
37.
Zurück zum Zitat Nijkamp J, Kuhlmann K, Sonke J-J, Ruers T (2016) Image-guided navigation surgery for pelvic malignancies using electromagnetic tracking and intra-operative imaging. Int J Comput Assist Radiol Surg 11:2CrossRef Nijkamp J, Kuhlmann K, Sonke J-J, Ruers T (2016) Image-guided navigation surgery for pelvic malignancies using electromagnetic tracking and intra-operative imaging. Int J Comput Assist Radiol Surg 11:2CrossRef
Metadaten
Titel
Accuracy assessment of wireless transponder tracking in the operating room environment
verfasst von
Roeland Eppenga
Koert Kuhlmann
Theo Ruers
Jasper Nijkamp
Publikationsdatum
11.08.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 12/2018
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1838-z

Weitere Artikel der Ausgabe 12/2018

International Journal of Computer Assisted Radiology and Surgery 12/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.