Skip to main content
Erschienen in: Endocrine 3/2022

28.02.2022 | Original Article

Acetate-mediated-obestatin modulation attenuates adipose-hepatic dysmetabolism in high fat diet-induced obese rat model

verfasst von: Kehinde S. Olaniyi, Chukwubueze L. Atuma, Isaiah W. Sabinari, Hadiza Mahmud, Azeezat O. Saidi, Adedamola A. Fafure, Lawrence A. Olatunji

Erschienen in: Endocrine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Approximately 650 million of world adult population is affected by obesity, which is characterized by adipose and hepatic metabolic dysfunction. Short chain fatty acids (SCFAs) have been linked to improved metabolic profile. However, the effect of SCFAs, particularly acetate on adipose-hepatic dysfunction is unclear. Therefore, the present study investigated the role of acetate on adipose-hepatic metabolic dysfunction and the possible involvement of obestatin in high fat diet-induced obese Wistar rats.

Methods

Adult male Wistar rats (160–190 g) were allotted into groups (n = 6/group): Control, acetate-treated, obese and obese + acetate-treated groups received vehicle (distilled water), sodium acetate (200 mg/kg), 40% HFD and 40% HFD plus sodium acetate respectively. The administration lasted for 12 weeks.

Results

HFD caused increased body weight gain and visceral adiposity, insulin resistance, hyperinsulinemia and increased pancreatic-β cell function and plasma/hepatic triglyceride and total cholesterol as well as decreased adipose triglyceride and total cholesterol, increased plasma, adipose, and hepatic malondialdehyde, TNF-α, uric acid, lactate production and plasma/adipose but not gamma-glutamyl transferase and decreased plasma, adipose, and hepatic nitric oxide, glucose-6-phosphate dehydrogenase (G6PD), glutathione (GSH) and obestatin concentration compared to the control group. Notwithstanding, treatment with acetate attenuated the alterations.

Conclusions

The results demonstrate that high fat diet-induced obesity is characterized with adipose and hepatic lipid dysmetabolism, which is associated with obestatin suppression. Findings also suggest that acetate provide protection against adipose and hepatic metabolic perturbations by restoring obestatin as well as G6PD/GSH-dependent antioxidant system.
Literatur
1.
Zurück zum Zitat M. Pallayova, S. Taheri, Non‐alcoholic fatty liver disease in obese adults: clinical aspects and current management strategies. Clin. Obes. 4(5), 243–253 (2014)PubMedCrossRef M. Pallayova, S. Taheri, Non‐alcoholic fatty liver disease in obese adults: clinical aspects and current management strategies. Clin. Obes. 4(5), 243–253 (2014)PubMedCrossRef
2.
Zurück zum Zitat L. Masmiquel, L.A. Leiter, J. Vidal, S. Bain, J. Petrie, E. Franek, I. Raz, A. Comlekci, S. Jacob, L. van Gaal, F.M.M. Baeres, LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovascular Diabetol. 15(1), 1–15 (2016)CrossRef L. Masmiquel, L.A. Leiter, J. Vidal, S. Bain, J. Petrie, E. Franek, I. Raz, A. Comlekci, S. Jacob, L. van Gaal, F.M.M. Baeres, LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovascular Diabetol. 15(1), 1–15 (2016)CrossRef
3.
Zurück zum Zitat J.O. Hill, H.R. Wyatt, J.C. Peters, The importance of energy balance. Eur. Endocrinol. 9(2), p.111 (2013)CrossRef J.O. Hill, H.R. Wyatt, J.C. Peters, The importance of energy balance. Eur. Endocrinol. 9(2), p.111 (2013)CrossRef
4.
6.
Zurück zum Zitat A.L.D. Nassar, L.P. Marot, P.P. Ovidio, G.S.F.D. Castro, A.A. Jordão, Oxidative stress and fatty acid profile in Wistar rats subjected to acute food restriction and refeeding with high-fat diets1. Acta Cir.úrgica Brasileira 29, 178–185 (2014)CrossRef A.L.D. Nassar, L.P. Marot, P.P. Ovidio, G.S.F.D. Castro, A.A. Jordão, Oxidative stress and fatty acid profile in Wistar rats subjected to acute food restriction and refeeding with high-fat diets1. Acta Cir.úrgica Brasileira 29, 178–185 (2014)CrossRef
7.
Zurück zum Zitat P. Barrett, J.G. Mercer, P.J. Morgan, Preclinical models for obesity research. Dis. Models Mech. 9(11), 1245–1255 (2016)CrossRef P. Barrett, J.G. Mercer, P.J. Morgan, Preclinical models for obesity research. Dis. Models Mech. 9(11), 1245–1255 (2016)CrossRef
8.
Zurück zum Zitat M.Q. He, J.Y. Wang, Y. Wang, J. Sui, M. Zhang, X. Ding, Y. Zhao, Z.Y. Chen, X.X. Ren, B.Y. Shi, High-fat diet-induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Dis. Transl. Med. 6(3), 198–207 (2020)PubMedPubMedCentral M.Q. He, J.Y. Wang, Y. Wang, J. Sui, M. Zhang, X. Ding, Y. Zhao, Z.Y. Chen, X.X. Ren, B.Y. Shi, High-fat diet-induced adipose tissue expansion occurs prior to insulin resistance in C57BL/6J mice. Chronic Dis. Transl. Med. 6(3), 198–207 (2020)PubMedPubMedCentral
10.
Zurück zum Zitat J. Liu, L. Han, L. Zhu, Y. Yu, Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet-induced obese rats. Lipids Health Dis. 15(1), 1–9 (2016)CrossRef J. Liu, L. Han, L. Zhu, Y. Yu, Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet-induced obese rats. Lipids Health Dis. 15(1), 1–9 (2016)CrossRef
11.
Zurück zum Zitat S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, A.W. Ferrante, Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112(12), 1796–1808 (2003)PubMedPubMedCentralCrossRef S.P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.L. Leibel, A.W. Ferrante, Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112(12), 1796–1808 (2003)PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat T.W. Liu, T.D. Heden, M. Matthew, E. Morris, K.L. Fritsche, V.J. Vieira‐Potter, J.P. Thyfault, High‐fat diet alters serum fatty acid profiles in obesity prone rats: Implications for invitro studies. Lipids 50(10), 997–1008 (2015)PubMedPubMedCentralCrossRef T.W. Liu, T.D. Heden, M. Matthew, E. Morris, K.L. Fritsche, V.J. Vieira‐Potter, J.P. Thyfault, High‐fat diet alters serum fatty acid profiles in obesity prone rats: Implications for invitro studies. Lipids 50(10), 997–1008 (2015)PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat D.E. Kelley, T.M. McKolanis, R.A. Hegazi, L.H. Kuller, S.C. Kalhan, Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am. J. Physiol.-Endocrinol. Metab. 285(4), E906–E916 (2003)PubMedCrossRef D.E. Kelley, T.M. McKolanis, R.A. Hegazi, L.H. Kuller, S.C. Kalhan, Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am. J. Physiol.-Endocrinol. Metab. 285(4), E906–E916 (2003)PubMedCrossRef
14.
15.
Zurück zum Zitat C.M. Zhao, M.W. Furnes, B. Stenström, B. Kulseng, D. Chen, Characterization of obestatin-and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell tissue Res. 331(3), 575–587 (2008)PubMedCrossRef C.M. Zhao, M.W. Furnes, B. Stenström, B. Kulseng, D. Chen, Characterization of obestatin-and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell tissue Res. 331(3), 575–587 (2008)PubMedCrossRef
16.
Zurück zum Zitat M.S.H. Akash, K. Rehman, A. Liaqat, Tumor necrosis factor‐alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 119(1), 105–110 (2018)PubMedCrossRef M.S.H. Akash, K. Rehman, A. Liaqat, Tumor necrosis factor‐alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem. 119(1), 105–110 (2018)PubMedCrossRef
17.
Zurück zum Zitat M. Manco, M. Marcellini, G. Giannone, V. Nobili, Correlation of serum TNF-α levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am. J. Clin. Pathol. 127(6), 954–960 (2007)PubMedCrossRef M. Manco, M. Marcellini, G. Giannone, V. Nobili, Correlation of serum TNF-α levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. Am. J. Clin. Pathol. 127(6), 954–960 (2007)PubMedCrossRef
18.
Zurück zum Zitat R. Granata, F. Settanni, D. Gallo, L. Trovato, L. Biancone, V. Cantaluppi, R. Nano, M. Annunziata, P. Campiglia, E. Arnoletti, C. Ghè, Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes 57(4), 967–979 (2008)PubMedCrossRef R. Granata, F. Settanni, D. Gallo, L. Trovato, L. Biancone, V. Cantaluppi, R. Nano, M. Annunziata, P. Campiglia, E. Arnoletti, C. Ghè, Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes 57(4), 967–979 (2008)PubMedCrossRef
19.
Zurück zum Zitat R. Granata, D. Gallo, R.M. Luque, A. Baragli, F. Scarlatti, C. Grande, L. Gesmundo, J. Córdoba‐Chacón, L. Bergandi, F. Settanni, G. Togliatto, Obestatin regulates adipocyte function and protects against diet‐induced insulin resistance and inflammation. FASEB J. 26(8), 3393–3411 (2012)PubMedCrossRef R. Granata, D. Gallo, R.M. Luque, A. Baragli, F. Scarlatti, C. Grande, L. Gesmundo, J. Córdoba‐Chacón, L. Bergandi, F. Settanni, G. Togliatto, Obestatin regulates adipocyte function and protects against diet‐induced insulin resistance and inflammation. FASEB J. 26(8), 3393–3411 (2012)PubMedCrossRef
20.
Zurück zum Zitat P.A. Kołodziejski, E. Pruszyńska-Oszmałek, M.Z. Strowski, K.W. Nowak, Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function. Endocrine 56(3), 538–550 (2017)PubMedCrossRef P.A. Kołodziejski, E. Pruszyńska-Oszmałek, M.Z. Strowski, K.W. Nowak, Long-term obestatin treatment of mice type 2 diabetes increases insulin sensitivity and improves liver function. Endocrine 56(3), 538–550 (2017)PubMedCrossRef
21.
Zurück zum Zitat A.P. Yu, F.N. Ugwu, B.T. Tam, P.H. Lee, V. Ma, S. Pang, A.S. Chow, K.K. Cheng, C.W. Lai, C.S. Wong, P.M. Siu, Obestatin and growth hormone reveal the interaction of central obesity and other cardiometabolic risk factors of metabolic syndrome. Sci. Rep. 10(1), 1–0 (2020) A.P. Yu, F.N. Ugwu, B.T. Tam, P.H. Lee, V. Ma, S. Pang, A.S. Chow, K.K. Cheng, C.W. Lai, C.S. Wong, P.M. Siu, Obestatin and growth hormone reveal the interaction of central obesity and other cardiometabolic risk factors of metabolic syndrome. Sci. Rep. 10(1), 1–0 (2020)
22.
Zurück zum Zitat P.D. Cani, R. Bibiloni, C. Knauf, A. Waget, A.M. Neyrinck, R.B. Delzenne, Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6), 470–1481 (2008)CrossRef P.D. Cani, R. Bibiloni, C. Knauf, A. Waget, A.M. Neyrinck, R.B. Delzenne, Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6), 470–1481 (2008)CrossRef
23.
Zurück zum Zitat C.B. de La Serre, C.L. Ellis, J. Lee, A.L. Hartman, J.C. Rutledge, H.E. Raybould, Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 299(2), G440–G448 (2010)CrossRef C.B. de La Serre, C.L. Ellis, J. Lee, A.L. Hartman, J.C. Rutledge, H.E. Raybould, Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 299(2), G440–G448 (2010)CrossRef
24.
Zurück zum Zitat F.S. Thomaz, F. Altemani, S.K. Panchal, S. Worrall, M.D. Nitert, The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. J. Hum. Hypertens. 35(2), 170–180 (2021)PubMedCrossRef F.S. Thomaz, F. Altemani, S.K. Panchal, S. Worrall, M.D. Nitert, The influence of wasabi on the gut microbiota of high-carbohydrate, high-fat diet-induced hypertensive Wistar rats. J. Hum. Hypertens. 35(2), 170–180 (2021)PubMedCrossRef
25.
Zurück zum Zitat M. Moriyama, R. Kurebayashi, K. Kawabe, K. Takano, Y. Nakamura, Acetate attenuates lipopolysaccharide-induced nitric oxide production through an anti-oxidative mechanism in cultured primary rat astrocytes. Neurochem. Res. 41(11), 3138–3146 (2016)PubMedCrossRef M. Moriyama, R. Kurebayashi, K. Kawabe, K. Takano, Y. Nakamura, Acetate attenuates lipopolysaccharide-induced nitric oxide production through an anti-oxidative mechanism in cultured primary rat astrocytes. Neurochem. Res. 41(11), 3138–3146 (2016)PubMedCrossRef
26.
Zurück zum Zitat H. Yamashita, H. Maruta, M. Jozuka, R. Kimura, H. Iwabuchi, M. Yamato, T. Saito, K. Fujisawa, Y. Takahashi, M. Kimoto, M. Hiemori, 2009. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73(3), 570–576 (2009)PubMedCrossRef H. Yamashita, H. Maruta, M. Jozuka, R. Kimura, H. Iwabuchi, M. Yamato, T. Saito, K. Fujisawa, Y. Takahashi, M. Kimoto, M. Hiemori, 2009. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem. 73(3), 570–576 (2009)PubMedCrossRef
27.
Zurück zum Zitat K.S. Olaniyi, O.A. Amusa, E.D. Areola, L.A. Olatunji, Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin–nicotinamide-induced diabetic rats. Exp. Biol. Med. 245(7), 667–676 (2020)CrossRef K.S. Olaniyi, O.A. Amusa, E.D. Areola, L.A. Olatunji, Suppression of HDAC by sodium acetate rectifies cardiac metabolic disturbance in streptozotocin–nicotinamide-induced diabetic rats. Exp. Biol. Med. 245(7), 667–676 (2020)CrossRef
28.
Zurück zum Zitat T. Shirai, Y. Shichi, M. Sato, Y. Tanioka, T. Furusho, T. Ota, T. Tadokoro, T. Suzuki, K.I. Kobayashi, Y. Yamamoto, High dietary fat-induced obesity in Wistar rats and type 2 Diabetes in nonobese Goto-Kakizaki rats differentially affect retinol-binding protein 4 expression and vitamin A metabolism. Nutr. Res. 36(3), 262–270 (2016)PubMedCrossRef T. Shirai, Y. Shichi, M. Sato, Y. Tanioka, T. Furusho, T. Ota, T. Tadokoro, T. Suzuki, K.I. Kobayashi, Y. Yamamoto, High dietary fat-induced obesity in Wistar rats and type 2 Diabetes in nonobese Goto-Kakizaki rats differentially affect retinol-binding protein 4 expression and vitamin A metabolism. Nutr. Res. 36(3), 262–270 (2016)PubMedCrossRef
29.
Zurück zum Zitat S. Schiavone, G.M. Camerino, E. Mhillaj, M. Zotti, M. Colaianna, A. De Giorgi, A. Trotta, F.P. Cantatore, E. Conte, M. Bove, P. Tucci, Visceral fat dysfunctions in the rat social isolation model of psychosis. Front. Pharmacol. 8, 787 (2017). S. Schiavone, G.M. Camerino, E. Mhillaj, M. Zotti, M. Colaianna, A. De Giorgi, A. Trotta, F.P. Cantatore, E. Conte, M. Bove, P. Tucci, Visceral fat dysfunctions in the rat social isolation model of psychosis. Front. Pharmacol. 8, 787 (2017).
30.
Zurück zum Zitat K.S. Olaniyi, L.A. Olatunji, L-glutamine ameliorates adipose-hepatic dysmetabolism in OC-treated female rats. J. Endocrinol. 246(1), 1–12 (2020)PubMedCrossRef K.S. Olaniyi, L.A. Olatunji, L-glutamine ameliorates adipose-hepatic dysmetabolism in OC-treated female rats. J. Endocrinol. 246(1), 1–12 (2020)PubMedCrossRef
31.
Zurück zum Zitat E. Cersosimo, C.E. Solis-Herrera, M. Trautmann, J. Malloy, C. Triplitt, Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10(1), 2–42 (2014)PubMedPubMedCentralCrossRef E. Cersosimo, C.E. Solis-Herrera, M. Trautmann, J. Malloy, C. Triplitt, Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10(1), 2–42 (2014)PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat O.A. Adeyanju, O.C. Badejogbin, D.E. Areola, K.S. Olaniyi, C. Dibia, O.A. Soetan, A.A. Oniyide, O.S. Michael, L.A. Olatunji, A.O. Soladoye, 2021. Sodium butyrate arrests pancreato-hepatic synchronous uric acid and lipid dysmetabolism in high fat diet-fed Wistar rats. Biomed. Pharmacother. 133, 110994 (2021)PubMedCrossRef O.A. Adeyanju, O.C. Badejogbin, D.E. Areola, K.S. Olaniyi, C. Dibia, O.A. Soetan, A.A. Oniyide, O.S. Michael, L.A. Olatunji, A.O. Soladoye, 2021. Sodium butyrate arrests pancreato-hepatic synchronous uric acid and lipid dysmetabolism in high fat diet-fed Wistar rats. Biomed. Pharmacother. 133, 110994 (2021)PubMedCrossRef
33.
Zurück zum Zitat N. Auberval, S. Dal, W. Bietiger, M. Pinget, N. Jeandidier, E. Maillard-Pedracini, V. Schini-Kerth, S. Sigrist, Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet. Diabetol. Metab. Syndr. 6(1), 1–9 (2014)CrossRef N. Auberval, S. Dal, W. Bietiger, M. Pinget, N. Jeandidier, E. Maillard-Pedracini, V. Schini-Kerth, S. Sigrist, Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet. Diabetol. Metab. Syndr. 6(1), 1–9 (2014)CrossRef
34.
Zurück zum Zitat K.S. Olaniyi, I.W. Sabinari, L.A. Olatunji, Oral L-glutamine restores adenosine and glutathione content in the skeletal muscle and adipose tissue of insulin-resistant pregnant rats. Nutrition 77, 110789 (2020)PubMedCrossRef K.S. Olaniyi, I.W. Sabinari, L.A. Olatunji, Oral L-glutamine restores adenosine and glutathione content in the skeletal muscle and adipose tissue of insulin-resistant pregnant rats. Nutrition 77, 110789 (2020)PubMedCrossRef
35.
Zurück zum Zitat D.H. Ipsen, J. Skat-Rørdam, M.M. Tsamouri, M. Latta, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular drivers of non-alcoholic steatohepatitis are sustained in mild-to-late fibrosis progression in a guinea pig model. Mol. Genet. Genom. 294(3), 649–661 (2019)CrossRef D.H. Ipsen, J. Skat-Rørdam, M.M. Tsamouri, M. Latta, J. Lykkesfeldt, P. Tveden-Nyborg, Molecular drivers of non-alcoholic steatohepatitis are sustained in mild-to-late fibrosis progression in a guinea pig model. Mol. Genet. Genom. 294(3), 649–661 (2019)CrossRef
36.
Zurück zum Zitat F. Dong, C.X. Fang, X. Yang, X. Zhang, F.L. Lopez, J. Ren, Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 49(6), 1421–1433 (2006)PubMedCrossRef F. Dong, C.X. Fang, X. Yang, X. Zhang, F.L. Lopez, J. Ren, Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 49(6), 1421–1433 (2006)PubMedCrossRef
37.
Zurück zum Zitat M. Adeva-Andany, M. Lopez-Ojen, R. Funcasta-Calderon, E. Ameneiros-Rodriguez, C. Donapetry-Garcia, M. Vila-Altesor et al. Comprehensive review on lactate metabolism in human health. Mitochondrion 17, 76–100 (2014)PubMedCrossRef M. Adeva-Andany, M. Lopez-Ojen, R. Funcasta-Calderon, E. Ameneiros-Rodriguez, C. Donapetry-Garcia, M. Vila-Altesor et al. Comprehensive review on lactate metabolism in human health. Mitochondrion 17, 76–100 (2014)PubMedCrossRef
38.
Zurück zum Zitat E.O. Dangana, O.S. Michael, T.E. Omolekulo, E.D. Areola, L.A. Olatunji, Enhanced hepatic glycogen synthesis and suppressed adenosine deaminase activity by lithium attenuates hepatic triglyceride accumulation in nicotine-exposed rats. Biomed. Pharmacother. 109, 1417–1427 (2019)PubMedCrossRef E.O. Dangana, O.S. Michael, T.E. Omolekulo, E.D. Areola, L.A. Olatunji, Enhanced hepatic glycogen synthesis and suppressed adenosine deaminase activity by lithium attenuates hepatic triglyceride accumulation in nicotine-exposed rats. Biomed. Pharmacother. 109, 1417–1427 (2019)PubMedCrossRef
39.
Zurück zum Zitat T. Wang, K. Chen, W. Yao, R. Zheng, Q. He, J. Xia, J. Li, Y. Shao, L. Zhang, L. Huang, L. Qin, Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J. Hepatol. 74(5), 1038–1052 (2021)PubMedCrossRef T. Wang, K. Chen, W. Yao, R. Zheng, Q. He, J. Xia, J. Li, Y. Shao, L. Zhang, L. Huang, L. Qin, Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance. J. Hepatol. 74(5), 1038–1052 (2021)PubMedCrossRef
40.
Zurück zum Zitat G. Paredes-Turrubiarte, A. González-Chávez, R. Pérez-Tamayo, B.Y. Salazar-Vázquez, V.S. Hernández, N. Garibay-Nieto, J.M. Fragoso, G. Escobedo, Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin. Exp. Med. 16(2), 193–202 (2016)PubMedCrossRef G. Paredes-Turrubiarte, A. González-Chávez, R. Pérez-Tamayo, B.Y. Salazar-Vázquez, V.S. Hernández, N. Garibay-Nieto, J.M. Fragoso, G. Escobedo, Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin. Exp. Med. 16(2), 193–202 (2016)PubMedCrossRef
41.
Zurück zum Zitat T.A. Johnson, H.A. Jinnah, N. Kamatani, Shortage of cellular ATP as a cause of diseases and strategies to enhance ATP. Front. Pharmacol. 10, 98 (2019)PubMedPubMedCentralCrossRef T.A. Johnson, H.A. Jinnah, N. Kamatani, Shortage of cellular ATP as a cause of diseases and strategies to enhance ATP. Front. Pharmacol. 10, 98 (2019)PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat L. Zhao, S. Zhong, H. Qu, Y. Xie, Z. Cao, Q. Li, P. Yang, Z. Varghese, J.F. Moorhead, X.Z. Chen, Ruan, Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice. Sci. Rep. 5(1), 1–12 (2015) L. Zhao, S. Zhong, H. Qu, Y. Xie, Z. Cao, Q. Li, P. Yang, Z. Varghese, J.F. Moorhead, X.Z. Chen, Ruan, Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice. Sci. Rep. 5(1), 1–12 (2015)
43.
Zurück zum Zitat P.A.L. Pacher, A. Nivorozhkin, C. Szabó, Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58(1), 87–114 (2006)PubMedCrossRef P.A.L. Pacher, A. Nivorozhkin, C. Szabó, Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58(1), 87–114 (2006)PubMedCrossRef
44.
Zurück zum Zitat D. Pierini, N.S. Bryan, Nitric oxide availability as a marker of oxidative stress. In Advanced Protocols in Oxidative Stress III. Humana Press, New York, NY 63-71 (2015) D. Pierini, N.S. Bryan, Nitric oxide availability as a marker of oxidative stress. In Advanced Protocols in Oxidative Stress III. Humana Press, New York, NY 63-71 (2015)
45.
Zurück zum Zitat A. Szentpéteri, H. Lőrincz, S. Somodi, V.E. Varga, G. Paragh, I. Seres, M. Harangi, Serum obestatin level strongly correlates with lipoprotein subfractions in non-diabetic obese patients. Lipids Health Dis. 17(1), 1–8 (2018)CrossRef A. Szentpéteri, H. Lőrincz, S. Somodi, V.E. Varga, G. Paragh, I. Seres, M. Harangi, Serum obestatin level strongly correlates with lipoprotein subfractions in non-diabetic obese patients. Lipids Health Dis. 17(1), 1–8 (2018)CrossRef
46.
Zurück zum Zitat F. Schinzari, M. Tesauro, A. Adamo, A. Paolucci, V. Rovella, N. Di Daniele, N. Mores, U. Campia, C. Cardillo, The gut hormone obestatin induces nitric oxide-dependent vasodilation and inhibits Endothelin-1 activity in obese patients. Circulation 130(suppl_2), A11694–A11694 (2014)CrossRef F. Schinzari, M. Tesauro, A. Adamo, A. Paolucci, V. Rovella, N. Di Daniele, N. Mores, U. Campia, C. Cardillo, The gut hormone obestatin induces nitric oxide-dependent vasodilation and inhibits Endothelin-1 activity in obese patients. Circulation 130(suppl_2), A11694–A11694 (2014)CrossRef
47.
Zurück zum Zitat T. Wojciechowicz, M. Skrzypski, P.A. Kołodziejski, D. Szczepankiewicz, E. Pruszyńska-Oszmałek, P. Kaczmarek, M.Z. Strowski, K.W. Nowak, Obestatin stimulates differentiation and regulates lipolysis and leptin secretion in rat preadipocytes. Mol. Med. Rep. 12(6), 8169–8175 (2015)PubMedCrossRef T. Wojciechowicz, M. Skrzypski, P.A. Kołodziejski, D. Szczepankiewicz, E. Pruszyńska-Oszmałek, P. Kaczmarek, M.Z. Strowski, K.W. Nowak, Obestatin stimulates differentiation and regulates lipolysis and leptin secretion in rat preadipocytes. Mol. Med. Rep. 12(6), 8169–8175 (2015)PubMedCrossRef
48.
Zurück zum Zitat E.F. Khaleel, G.A. Abdel-Aleem, Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation. Arch. Physiol. Biochem. 125(1), 64–78 (2019)PubMedCrossRef E.F. Khaleel, G.A. Abdel-Aleem, Obestatin protects and reverses nonalcoholic fatty liver disease and its associated insulin resistance in rats via inhibition of food intake, enhancing hepatic adiponectin signaling, and blocking ghrelin acylation. Arch. Physiol. Biochem. 125(1), 64–78 (2019)PubMedCrossRef
49.
Zurück zum Zitat A.A. Muhammed, B.S. Boukhazeem, K.G. Alqathafy, A.M. Alhasnony, A.G. Elsayed, E.A. Emara, Effect of obestatin on hepatic injury induced by renal ischemia/reperfusion in rat. J. Health Sci. Res. 19, 7–14 (2020) A.A. Muhammed, B.S. Boukhazeem, K.G. Alqathafy, A.M. Alhasnony, A.G. Elsayed, E.A. Emara, Effect of obestatin on hepatic injury induced by renal ischemia/reperfusion in rat. J. Health Sci. Res. 19, 7–14 (2020)
50.
Zurück zum Zitat T.E. Omolekulo, O.S. Michael, L.A. Olatunji, Sodium acetate improves disrupted glucoregulation and hepatic triglyceride content in insulin-resistant female rats: involvement of adenosine deaminase and dipeptidyl peptidase-4 activities. Naunyn-Schmiedeberg’s Arch. Pharmacol. 392(1), 103–116 (2019)CrossRef T.E. Omolekulo, O.S. Michael, L.A. Olatunji, Sodium acetate improves disrupted glucoregulation and hepatic triglyceride content in insulin-resistant female rats: involvement of adenosine deaminase and dipeptidyl peptidase-4 activities. Naunyn-Schmiedeberg’s Arch. Pharmacol. 392(1), 103–116 (2019)CrossRef
51.
Zurück zum Zitat B.P. Ganesh, J.W. Nelson, J.R. Eskew, A. Ganesan, N.J. Ajami, J.F. Petrosino, R.M. Bryan Jr, D.J. Durgan, Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 72(5), 1141–1150 (2018)PubMedCrossRef B.P. Ganesh, J.W. Nelson, J.R. Eskew, A. Ganesan, N.J. Ajami, J.F. Petrosino, R.M. Bryan Jr, D.J. Durgan, Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 72(5), 1141–1150 (2018)PubMedCrossRef
52.
Zurück zum Zitat F.Z. Marques, E. Nelson, P.Y. Chu, D. Horlock, A. Fiedler, M. Ziemann, J.K. Tan, S. Kuruppu, N.W. Rajapakse, A. El-Osta, C.R. Mackay, High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10), 964–977 (2017)PubMedCrossRef F.Z. Marques, E. Nelson, P.Y. Chu, D. Horlock, A. Fiedler, M. Ziemann, J.K. Tan, S. Kuruppu, N.W. Rajapakse, A. El-Osta, C.R. Mackay, High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10), 964–977 (2017)PubMedCrossRef
Metadaten
Titel
Acetate-mediated-obestatin modulation attenuates adipose-hepatic dysmetabolism in high fat diet-induced obese rat model
verfasst von
Kehinde S. Olaniyi
Chukwubueze L. Atuma
Isaiah W. Sabinari
Hadiza Mahmud
Azeezat O. Saidi
Adedamola A. Fafure
Lawrence A. Olatunji
Publikationsdatum
28.02.2022
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 3/2022
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-022-03023-w

Weitere Artikel der Ausgabe 3/2022

Endocrine 3/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.