Skip to main content
Erschienen in: Lasers in Medical Science 3/2018

21.02.2018 | Original Article

Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model

verfasst von: Le Han, Ben Liu, Xianyan Chen, Haiyan Chen, Wenjia Deng, Changsheng Yang, Bin Ji, Miaojian Wan

Erschienen in: Lasers in Medical Science | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Activation of the Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis and hair growth. Recently, low-level laser therapy (LLLT) was evaluated for stimulating hair growth in numerous clinical studies, in which 655-nm red light was found to be most effective and practical for stimulating hair growth. We evaluated whether 655-nm red light + light-emitting diode (LED) could promote human hair growth by activating Wnt/β-catenin signaling. An in vitro culture of human hair follicles (HFs) was irradiated with different intensities of 655-nm red light + LED, 21 h7 (an inhibitor of β-catenin), or both. Immunofluorescence staining was performed to assess the expression of β-catenin, GSK3β, p-GSK3β, and Lef1 in the Wnt/β-catenin signaling. The 655-nm red light + LED not only enhanced hair shaft elongation, but also reduced catagen transition in human hair follicle organ culture, with the greatest effectiveness observed at 5 min (0.839 J/cm2). Additionally, 655-nm red light + LED enhanced the expression of β-catenin, p-GSK3β, and Lef1, signaling molecules of the Wnt/β-catenin pathway, in the hair matrix. Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in vitro and therefore may serve as an alternative therapeutic option for alopecia.
Literatur
1.
Zurück zum Zitat Lanzafame RJ et al (2013) The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med 45:487–495CrossRefPubMed Lanzafame RJ et al (2013) The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med 45:487–495CrossRefPubMed
2.
Zurück zum Zitat Jimenez JJ et al (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15:115–127CrossRefPubMedPubMedCentral Jimenez JJ et al (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15:115–127CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Yamazaki M et al (2003) Linear polarized infrared irradiation using Super LizerTM is an effective treatment for multiple-type alopecia areata. Int J Dermatol 42:738–740CrossRefPubMed Yamazaki M et al (2003) Linear polarized infrared irradiation using Super LizerTM is an effective treatment for multiple-type alopecia areata. Int J Dermatol 42:738–740CrossRefPubMed
4.
Zurück zum Zitat Zarei M et al (2016) Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci 31:363–371CrossRefPubMed Zarei M et al (2016) Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci 31:363–371CrossRefPubMed
5.
Zurück zum Zitat Gupta AK, Foley KA (2017) A critical assessment of the evidence for low-level laser therapy in the treatment of hair loss. Dermatol Surg 43:188–197CrossRefPubMed Gupta AK, Foley KA (2017) A critical assessment of the evidence for low-level laser therapy in the treatment of hair loss. Dermatol Surg 43:188–197CrossRefPubMed
6.
Zurück zum Zitat Fushimi T, et al (2011) Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. 64:246–248 Fushimi T, et al (2011) Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. 64:246–248
7.
Zurück zum Zitat Chung H et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533CrossRefPubMed Chung H et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533CrossRefPubMed
8.
Zurück zum Zitat Muller-Rover S et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15CrossRefPubMed Muller-Rover S et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117:3–15CrossRefPubMed
9.
Zurück zum Zitat Langan EA et al (2015) Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 24:903–911CrossRefPubMed Langan EA et al (2015) Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 24:903–911CrossRefPubMed
10.
Zurück zum Zitat DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMed DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMed
11.
Zurück zum Zitat David ES, Catherine L et al (2010) β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci 107:21564–21569CrossRef David ES, Catherine L et al (2010) β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci 107:21564–21569CrossRef
12.
Zurück zum Zitat Enshell-Seijffers D et al (2010) β-Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18:633–642CrossRefPubMedPubMedCentral Enshell-Seijffers D et al (2010) β-Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 18:633–642CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Kitagawa T et al (2009) Keratinocyte growth inhibition through the modication of Wnt signaling by androgen in balding dermal papilla cells. J Clin Endocrinol Metab 94:1288–1294CrossRefPubMedPubMedCentral Kitagawa T et al (2009) Keratinocyte growth inhibition through the modication of Wnt signaling by androgen in balding dermal papilla cells. J Clin Endocrinol Metab 94:1288–1294CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Li YH et al (2013) Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol 133(1):42–48CrossRefPubMed Li YH et al (2013) Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol 133(1):42–48CrossRefPubMed
15.
Zurück zum Zitat Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640CrossRefPubMed Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640CrossRefPubMed
17.
Zurück zum Zitat Munck A et al (2014) Use of low-level laser therapy as monotherapy or concomitant therapy for male and female androgenetic alopecia. Int J Trichology 6:45–49CrossRefPubMedPubMedCentral Munck A et al (2014) Use of low-level laser therapy as monotherapy or concomitant therapy for male and female androgenetic alopecia. Int J Trichology 6:45–49CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kwon OS et al (2006) Human hair growth ex vivo is correlated with in vivo hair growth: selective categorization of hair follicles for more reliable hair follicle organ culture. Arch Dermatol Res 297:367–371CrossRefPubMed Kwon OS et al (2006) Human hair growth ex vivo is correlated with in vivo hair growth: selective categorization of hair follicles for more reliable hair follicle organ culture. Arch Dermatol Res 297:367–371CrossRefPubMed
19.
Zurück zum Zitat Kloepper JE et al (2010) Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture. Exp Dermatol 19:305–312CrossRefPubMed Kloepper JE et al (2010) Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture. Exp Dermatol 19:305–312CrossRefPubMed
20.
Zurück zum Zitat Xu H et al (2015) The WNT/beta-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa. Food Funct 6:2396–2404CrossRefPubMed Xu H et al (2015) The WNT/beta-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa. Food Funct 6:2396–2404CrossRefPubMed
21.
Zurück zum Zitat Rogers GE et al (2001) Animal models and culture methods in the study of hair growth. Clin Dermatol 19:105–119CrossRefPubMed Rogers GE et al (2001) Animal models and culture methods in the study of hair growth. Clin Dermatol 19:105–119CrossRefPubMed
23.
24.
Zurück zum Zitat Chio YS et al (2013) Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13:720–733CrossRef Chio YS et al (2013) Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13:720–733CrossRef
26.
Zurück zum Zitat Kishimoto J et al (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14:1181–1185PubMedPubMedCentral Kishimoto J et al (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev 14:1181–1185PubMedPubMedCentral
27.
Zurück zum Zitat Reddy S et al (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107:69–82CrossRefPubMed Reddy S et al (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107:69–82CrossRefPubMed
28.
Zurück zum Zitat Millar SE et al (1999) WNT signaling in the control of hair growth and structure. Dev Biol 207:133–149CrossRefPubMed Millar SE et al (1999) WNT signaling in the control of hair growth and structure. Dev Biol 207:133–149CrossRefPubMed
29.
Zurück zum Zitat Shimizu H, Morgan BA (2004) Wnt signaling through the β-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol 122:239–245CrossRefPubMed Shimizu H, Morgan BA (2004) Wnt signaling through the β-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J Invest Dermatol 122:239–245CrossRefPubMed
30.
Zurück zum Zitat Kwack MH et al (2008) Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol. 128:262–269CrossRefPubMed Kwack MH et al (2008) Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol. 128:262–269CrossRefPubMed
31.
Zurück zum Zitat Kim YE et al (2016) 3-Deoxysappanchalcone promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice by modulating Wnt/β-catenin and STAT signaling. Biomol Ther 24(6):572–580CrossRef Kim YE et al (2016) 3-Deoxysappanchalcone promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice by modulating Wnt/β-catenin and STAT signaling. Biomol Ther 24(6):572–580CrossRef
32.
Zurück zum Zitat Myung PS et al (2013) Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol 133(1):31–41CrossRefPubMed Myung PS et al (2013) Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J Invest Dermatol 133(1):31–41CrossRefPubMed
33.
Zurück zum Zitat Zhang TR et al (2017) Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice. Lasers Med Sci 32:1189–1195CrossRefPubMed Zhang TR et al (2017) Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice. Lasers Med Sci 32:1189–1195CrossRefPubMed
34.
Zurück zum Zitat Li YH et al (2011) Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway. Clin Exp Dermatol 36(5):534–540CrossRefPubMed Li YH et al (2011) Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway. Clin Exp Dermatol 36(5):534–540CrossRefPubMed
35.
36.
Zurück zum Zitat Sheen YS et al (2015) Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro. Lasers Surg Med 47:50–59CrossRefPubMed Sheen YS et al (2015) Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro. Lasers Surg Med 47:50–59CrossRefPubMed
37.
Zurück zum Zitat Link RE et al (1990) Epithelial growth by rat vibrissae follicles in vitro requires mesenchymal contact via native extracellular matrix. J Invest Dermatol 95:202–207CrossRefPubMed Link RE et al (1990) Epithelial growth by rat vibrissae follicles in vitro requires mesenchymal contact via native extracellular matrix. J Invest Dermatol 95:202–207CrossRefPubMed
38.
Zurück zum Zitat Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:450–481CrossRef Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:450–481CrossRef
Metadaten
Titel
Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model
verfasst von
Le Han
Ben Liu
Xianyan Chen
Haiyan Chen
Wenjia Deng
Changsheng Yang
Bin Ji
Miaojian Wan
Publikationsdatum
21.02.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2455-3

Weitere Artikel der Ausgabe 3/2018

Lasers in Medical Science 3/2018 Zur Ausgabe