Skip to main content
Erschienen in: Brain Structure and Function 8/2019

27.07.2019 | Original Article

Acute and long-term treadmill running differentially induce c-Fos expression in region- and time-dependent manners in mouse brain

verfasst von: Sheng-Feng Tsai, Yu-Wen Liu, Yu-Min Kuo

Erschienen in: Brain Structure and Function | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Abstract

Acute and long-term exercise differentially affect brain functions. It has been suggested that neuronal activation is one of the mechanisms for exercise-induced enhancement of brain functions. However, the differential effects of acute and long-term exercise on the spatial and temporal profiles of neuronal activation in the brain have been scarcely explored. In this study, we profiled the expression of c-Fos, a marker of neuronal activation, in selected 26 brain regions of 2-month-old male C57/B6 mice that received either a single bout of treadmill running (acute exercise) or a 4-week treadmill training (long-term exercise) at the same duration (1 h/day) and intensity (10 m/min). The c-Fos expression was determined before, immediately after, and 2 h after the run. The results showed that acute exercise increased the densities of c-Fos+ cells in the ventral hippocampal CA1 region, followed by (in a high to low order) the primary somatosensory cortex, other hippocampal subregions, and striatum immediately after the run; significant changes remained evident in the hippocampal subregions after a 2-h rest. Long-term exercise increased the densities of c-Fos+ cells in the striatum, followed by the primary somatosensory, primary and secondary motor cortices, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray; significant changes remained evident in the striatum, hippocampal subregions, hypothalamic nuclei, and lateral periaqueductal gray after a 2-h rest. Interestingly, the densities of c-Fos+ cells in the substantia nigra and ventral tegmental area only increased after a 2-h rest after the run in the long-term exercise group. The densities of c-Fos+ cells were positively correlated with the expression of brain-derived neurotrophic factor in the selected brain regions. In conclusion, both acute and long-term treadmill running at mild intensity induce c-Fos expression in the limbic system and movement-associated cortical and subcortical regions, with long-term exercise involving more brain regions (i.e., hypothalamus and periaqueductal gray) and longer lasting effects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–5572CrossRefPubMedPubMedCentral Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–5572CrossRefPubMedPubMedCentral
Zurück zum Zitat Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20(8):2926–2933CrossRefPubMedPubMedCentral Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20(8):2926–2933CrossRefPubMedPubMedCentral
Zurück zum Zitat Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301CrossRefPubMed Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301CrossRefPubMed
Zurück zum Zitat Cotman CW, Engesser-Cesar C (2002) Exercise enhances and protects brain function. Exerc Sport Sci Rev 30(2):75–79CrossRefPubMed Cotman CW, Engesser-Cesar C (2002) Exercise enhances and protects brain function. Exerc Sport Sci Rev 30(2):75–79CrossRefPubMed
Zurück zum Zitat Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31(2):84–92PubMedPubMedCentral Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR (2006) Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J Psychiatry Neurosci 31(2):84–92PubMedPubMedCentral
Zurück zum Zitat Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297CrossRefPubMed Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297CrossRefPubMed
Zurück zum Zitat Horn EM, Kramer JM, Waldrop TG (2000) Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons. Neuroscience 99(4):711–720CrossRefPubMed Horn EM, Kramer JM, Waldrop TG (2000) Development of hypoxia-induced Fos expression in rat caudal hypothalamic neurons. Neuroscience 99(4):711–720CrossRefPubMed
Zurück zum Zitat Ichiyama RM, Gilbert AB, Waldrop TG, Iwamoto GA (2002) Changes in the exercise activation of diencephalic and brainstem cardiorespiratory areas after training. Brain Res 947(2):225–233CrossRefPubMed Ichiyama RM, Gilbert AB, Waldrop TG, Iwamoto GA (2002) Changes in the exercise activation of diencephalic and brainstem cardiorespiratory areas after training. Brain Res 947(2):225–233CrossRefPubMed
Zurück zum Zitat Jenner P (2001) Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24(5):245–247CrossRefPubMed Jenner P (2001) Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 24(5):245–247CrossRefPubMed
Zurück zum Zitat Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG (2000) Hypothalamus, hypertension, and exercise. Brain Res Bull 53(1):77–85CrossRefPubMed Kramer JM, Plowey ED, Beatty JA, Little HR, Waldrop TG (2000) Hypothalamus, hypertension, and exercise. Brain Res Bull 53(1):77–85CrossRefPubMed
Zurück zum Zitat Legrand F, Heuze JP (2007) Antidepressant effects associated with different exercise conditions in participants with depression: a pilot study. J Sport Exerc Psychol 29(3):348–364CrossRefPubMed Legrand F, Heuze JP (2007) Antidepressant effects associated with different exercise conditions in participants with depression: a pilot study. J Sport Exerc Psychol 29(3):348–364CrossRefPubMed
Zurück zum Zitat Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing, Houston Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing, Houston
Zurück zum Zitat Porcari JP, Bryant CX, Comana F (2015) Exercise physiology. F.A. Davis Company, Philadelphia Porcari JP, Bryant CX, Comana F (2015) Exercise physiology. F.A. Davis Company, Philadelphia
Zurück zum Zitat Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16(23):7688–7698CrossRefPubMedPubMedCentral Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M, di Prampero PE (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16(23):7688–7698CrossRefPubMedPubMedCentral
Zurück zum Zitat Sasaki K, Gemba H (1984) Compensatory motor function of the somatosensory cortex for the motor cortex temporarily impaired by cooling in the monkey. Exp Brain Res 55(1):60–68CrossRefPubMed Sasaki K, Gemba H (1984) Compensatory motor function of the somatosensory cortex for the motor cortex temporarily impaired by cooling in the monkey. Exp Brain Res 55(1):60–68CrossRefPubMed
Zurück zum Zitat Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387CrossRefPubMed Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387CrossRefPubMed
Zurück zum Zitat Tsai SF, Wu HT, Chen PC, Chen YW, Yu M, Tzeng SF, Wu PH, Chen PS, Kuo YM (2018b) Stress Aggravates High-Fat-Diet-Induced Insulin Resistance via a Mechanism That Involves the Amygdala and Is Associated with Changes in Neuroplasticity. Neuroendocrinology 107:147–157. https://doi.org/10.1159/000491018 CrossRefPubMed Tsai SF, Wu HT, Chen PC, Chen YW, Yu M, Tzeng SF, Wu PH, Chen PS, Kuo YM (2018b) Stress Aggravates High-Fat-Diet-Induced Insulin Resistance via a Mechanism That Involves the Amygdala and Is Associated with Changes in Neuroplasticity. Neuroendocrinology 107:147–157. https://​doi.​org/​10.​1159/​000491018 CrossRefPubMed
Metadaten
Titel
Acute and long-term treadmill running differentially induce c-Fos expression in region- and time-dependent manners in mouse brain
verfasst von
Sheng-Feng Tsai
Yu-Wen Liu
Yu-Min Kuo
Publikationsdatum
27.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01926-5

Weitere Artikel der Ausgabe 8/2019

Brain Structure and Function 8/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.