Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2016

Open Access 01.12.2016 | Research article

Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension

verfasst von: Lars Harbaum, Emilia Renk, Sara Yousef, Antonia Glatzel, Nicole Lüneburg, Jan K. Hennigs, Tim Oqueka, Hans J. Baumann, Djordje Atanackovic, Ekkehard Grünig, Rainer H. Böger, Carsten Bokemeyer, Hans Klose

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2016

Abstract

Background

Exercise training positively influences exercise tolerance and functional capacity of patients with idiopathic pulmonary arterial hypertension (IPAH). However, the underlying mechanisms are unclear. We hypothesized that exercise modulates the activated inflammatory state found in IPAH patients.

Methods

Single cardiopulmonary exercise testing was performed in 16 IPAH patients and 10 healthy subjects. Phenotypic characterization of peripheral blood mononuclear cells and circulating cytokines were assessed before, directly after and 1 h after exercise.

Results

Before exercise testing, IPAH patients showed elevated Th2 lymphocytes, regulatory T lymphocytes, IL-6, and TNF-alpha, whilst Th1/Th17 lymphocytes and IL-4 were reduced. In IPAH patients but not in healthy subject, exercise caused an immediate relative decrease of Th17 lymphocytes and a sustained reduction of IL-1-beta and IL-6. The higher the decrease of IL-6 the higher was the peak oxygen consumption of IPAH patients.

Conclusions

Exercise seems to be safe from an immune and inflammatory point of view in IPAH patients. Our results demonstrate that exercise does not aggravate the inflammatory state and seems to elicit an immune-modulating effect in IPAH patients.
Abkürzungen
6MWD
6 min walk distance
ATS
American Thoracic Society
BMI
Body mass index
CCL
C-C motif ligand
CCR
C-C motif receptor
CD
Cluster of differentiation
CI
Cardiac index
CPET
Cardiopulmonary exercise testing
CRP
C-reactive Protein
CXCL
C-X-C motif ligand
CXCR
C-X-C motif receptor
ELISA
Enzyme linked immunosorbent assay
ERA
Endothelin receptor antagonists
ERS
European Respiratory Society
FACS
Fluorescence-activated cell sorting
FEV
Forced expiratory volume
FVC
Forced vital capacity
HPAH
Hereditary pulmonary arterial hypertension
IL
Interleukin
IPAH
Idiopathic pulmonary arterial hypertension
mPAP
Mean pulmonary arterial pressure
NT-proBNP
N-terminal pro-hormone of brain natriuretic peptide
PAH
Pulmonary arterial hypertension
PAWP
Pulmonary artery wedge pressure
PDE5-I
Phosphodiesterase type 5 inhibitor
PFT
Pulmonary function test
PH
Pulmonary hypertension
PVR
Pulmonary vascular resistance
rANOVA
Repeated analysis of variances
RAP
Right atrial pressure
sGC-S
Soluble guanylate cyclase stimulator
TCR
T cell receptor
Th
T helper
TNF
Tumor necrosis factor
WHO-FC
World Health Organization functional class

Background

Pulmonary arterial hypertension (PAH) is a devastating, progressive vascular disease characterized by elevated pulmonary vascular resistance and right heart failure. Idiopathic PAH (IPAH) is diagnosed when no known condition or exposure associated with PAH is detectable. In pulmonary arteries of patients with IPAH a prominent peri-vascular inflammation including tertiary (ectopic) lymphoid follicles was frequently observed next to endothelial dysfunction, in-situ thrombosis, loss of small vessels and occlusive vascular remodeling [18, 23, 24]. The local inflammatory process is accompanied by an altered systemic inflammatory status (or vice versa). Levels of circulating cytokines and inflammatory cells were found to be altered in patients with IPAH [5, 12, 18, 22, 25]. Peripheral regulatory T lymphocytes and interleukin (IL)-17 producing Th lymphocytes were found to be increased and C-C chemokine receptor (CCR) 6+ T lymphocytes depleted in peripheral blood samples taken from IPAH patients [12, 18, 25]. Interestingly, it has been shown that the chemokine receptors CCR4 and CXCR3 distinguish two stable subsets of IL-17-producing cells within the CCR6+ compartment, wherein CCR6+/CCR4-/CXCR3+ cells produced IL-17 and INF-gamma (i.e. Th1/Th17) [1]. The emerging focus on inflammation lends itself to a whole new approach in understanding the disease and to a new perspective of treating IPAH.
Physical exercise has an anti-inflammatory effect in chronic cardiovascular diseases by amelioration of chronic inflammation [16, 20]. Contracting skeletal muscle cells produce cytokines such as IL-1ra, IL-6 and IL-10 [10]. Immune-modulation and down-regulation of the chronic inflammation seem possible due to repeated short-lasting alterations in cytokine levels by exercise [10]. On the other hand pro-inflammatory cytokines diminish in the long term due to the reduction of the visceral fat mass [10]. In advanced cardiopulmonary diseases such as IPAH, however, cachexia and physical degeneration may be present. Patients with IPAH who underwent supervised exercise training reached higher levels of physical activity, had decreased fatigue severity, showed improved 6-min walk distance (6MWD), cardiopulmonary function such as improved peak oxygen consumption and patient-reported quality of life [6, 8, 9]. Thus, it is recommended to implement controlled exercise training and rehabilitation in PAH patients’ care taking [3, 8, 9, 11, 27]. However, the underlying mechanisms leading to the improvement of symptoms, exercise, and functional capacity are not clear [9].
In this study, we present the first evidence for an exercise-induced immune response in patients with IPAH. The single bout of exercise in IPAH patients seems to be safe from an immune and inflammatory point of view and we demonstrate that the immune system reacts differently in patients with IPAH as compared to healthy control subjects.

Methods

Study subjects and procedure

Patients were recruited from the Center of Pulmonary Arterial Hypertension at the University Medical Center Hamburg-Eppendorf with the following inclusion criteria: (1) prevalent diagnosis of IPAH in accordance with the current diagnostic recommendations and classification [9], (2) >18 years of age, (3) World Health Organization functional class (WHO FC) II-III, (4) no evidence for current or past malignant or autoimmune diseases, (5) without exercise limitation due to an orthopedic reason, and (6) without current infectious disease. Healthy subjects underwent echocardiography to rule out signs of right or left heart failure and were matched with regard to age, gender and body mass index (BMI). Cardiopulmonary exercise testing (CPET) was performed as symptom-limited incremental cycling exercise according to the ERS task force (2007) [17]. The rate of workload increase was 10 Watt/min. The anaerobic threshold (AT) was indirectly measured as the point when the VCO2 − VO2 slope abruptly increases. The peak oxygen consumption (Peak VO2/kg [ml/min/kg]) was used for analysis because it represents the most widely used CPET parameter for therapeutic decision making in PAH according to current recommendations [9]. No interruption of drug intake was required and the time between exercise testing and drug intake (PAH targeted therapy) was 2–4 h. The following assessments were obtained from all study subjects at the day of CPET: 6MWD was obtained using a standardized protocol in accordance with the American Thoracic Society statement (Measuring the distance patients can quickly walk on a flat, hard surface 30 m hallway in a period of 6 min. Patients are allowed to stop and rest during the test), functional class according to the modified WHO classification was assessed by the attending physician, N-terminal pro-hormone of brain natriuretic peptide (NT-proBNP) concentrations were measured using a commercially available assay (Dimension Vista, Siemens Healthcare Diagnostics, IL, USA; Catalogue No. K6423A), echocardiography and pulmonary function test (PFT) including spirometry, body plethysmography and gas dilution.

Differential white blood cell count and fluorescence-activated cell sorting (FACS)

Peripheral venous whole blood samples were taken at rest before, directly after and 1 h after CPET. Differential blood count was obtained (Coulter Ac-T diff 2, Beckmann Coulter, Krefeld, Germany) for absolute and relative numbers of leukocytes, neutrophils, lymphocytes and monocytes. Immunophenotyping was performed on whole blood samples with multicolor (4–6 colors) flow cytometry (LSR Fortessa, BD Bioscience, NJ, USA). In brief, 100 μl blood samples were incubated with staining buffer containing a pre-titrated concentration of fluorescent monoclonal antibodies or with immunoglobulin (Ig) isotype-matched controls, respectively (all BioLegend, CA, USA). Flurochromes were Alexa fluor 700 (anti-CD3), allophycocyanin (anti-CD8, -CD45, -CD127, -CD183), brilliant Violet (BV) 421 (anti-TCRγδ), BV605 (anti-CD56), BV650 (anti-CD196), fluorescein isothiocyanate (anit-CD3, -CD14), pacific blue (anti-CD19), R-phycoerythrin (anti-CD4, -CD16, -CD194) and peridinin-chlorophyll-protein complex (anti-CD4). Compensation has been performed computationally before analysis. Erythrocytes were lysed (RBC Lysis/Fixation solution, BioLegend, CA, USA), samples were washed twice with buffer solution (phosphate-buffered saline, 0.1 % bovine serum and 0.02 % NaN3), pelleted by centrifugation (350 × g for 5 min) and stored in buffer solution in the dark at 4 °C until analysis. Flow cytometric analysis was performed immediatly after blood sampling. T and B lymphocytes were gated by expression of CD3 or CD19 out of CD45+/CD16low/CD14 cells (Table 1). T lymphocyte phenotypes were gated by size exclusion, CD3+ and subsequent expression of CD4+/CD8 (T helper), CD4/CD8 (cytotoxic T) or CD4/CD8/TCRγδ+ (TCRγδ) (Table 1). T helper lymphocytes were gated by size exclusion, CD3+/CD4+ and subsequent expression of surface chemokine receptors, which allowed for the distinction of four different memory T helper lymphocytes, CXCR3+/CCR4/CCR6 (Th1), CXCR3/CCR4+/CCR6 (Th2), CXCR3/CCR4+/CCR6+ (Th17) and CXCR3+/CCR4/CCR6+ (Th1/Th17), as described previously (Fig. 1 and Table 1) [1, 4]. Regulatory T lymphocytes (Treg) were identified as T helper cells expressing high levels of CD25 and low levels of CD127 (Table 1). Natural killer cells were gated by expression of CD45/CD56 and subsequent expression of CD3 (Table 1). The flow cytometry data were collected using FACS-Diva software (BD Bioscience).
Table 1
Circulating peripheral blood mononuclear cells quantified by flow cytometry
Tube
Cell subset
Immunophenotypes
Paternal cells
Derivative cells
1
Natural killer T cells
CD45+/CD56+
CD3+
Natural killer cells
CD3
B lymphocytes
CD45+/CD16low/CD14
CD19+
T lymphocytes
CD3+
2
T helper lymphocytes
CD3+
CD4+/CD8
Cytotoxic T lymphocytes
CD4/CD8+
TCRγδ lymphocytes
CD4/CD8/TCRγδ+
3
TH1 lymphocytes
CD3+/CD4+
CXCR3+/CCR4/CCR6
TH1/TH17 lymphocytes
CXCR3+/CCR4/CCR6+
TH17 lymphocytes
CXCR3/CCR4+/CCR6+
TH2 lymphocytes
CXCR3/CCR4+/CCR6
4
Regulatory T lymphocytes
CD3+/CD4+
CD25high/CD127low
CD cluster of differentiation, CCR C-C motif receptor, TCR T cell receptor, T H T helper lymphocytes

Enzyme linked immunosorbent assay (ELISA) and magnetic bead-based multiplex immunoassay

Serum samples were stored at −80 °C and thawed only for analyses. Serum concentrations of IL-6 and IL-17A were measured using human IL-6 ELISA kit (Pierce Biotechnology, IL, USA) and Biosource IL-17 Cytoscreen (Life Technologies, CA, USA) following the manufacturer’s instructions. ELISA standards and samples were run in duplicate. The sensitivity of the assays was 1 pg/l for IL-6 and 2 pg/l for IL-17A. The optical density (450 nm) of each sample was determined using a microplate reader (Sunrise, Männedorf, Switzerland). Serum concentrations of IL-1-beta, IL-1ra, IL-2, IL-4, IL-10, IL-12p70, IL-13 and TNF-alpha were analyzed using a magnetic bead-based multiplex assay solution (Bio-Plex Pro TM Human Cytokine Standard 27-Plex Group I, Bio-Rad Laboratories, CA, USA) according to manufacturer’s protocol. In short, standards and samples were diluted 1:4 in buffer and added to microplates containing assay beads in duplicate. The data were collected using the Bio-Plex 200 suspension array system (Bio-Rad Laboratories).

Statistical analysis

The differences between patients and healthy controls were compared using the unpaired Student’s t test in parametric data and the Chi-square-test in nominal data. Correlations were assessed by Pearson’s coefficient. One-way repeated measures analysis of variance (rANOVA) was conducted to analyze the difference within patients or healthy subjects, respectively, over time (i.e. before, direct after and 1 h after CPET). Two-way repeated measures rANOVA was conducted to analyze the differences between patients and healthy subjects over time. P-values as result of rANOVA are presented following Wilks’ Lambda. All reported p-values were two-sided and considered significant at levels <0.05. All statistical calculations were performed using SPSS statistics version 20 software (IBM, NY, USA).

Results

Baseline characteristics of study subjects

Hemodynamic parameters of 16 IPAH patients were mean pulmonary arterial pressure (mPAP) of 51 ± 19 mm Hg, pulmonary vascular resistance (PVR) of 1065 ± 809 dyne*s*cm5, pulmonary artery wedge pressure (PAWP) of 10 ± 3 mm Hg, right arterial pressure (RAP) of 7 ± 5 mm Hg and cardiac index (CI) of 2.18 ± 0.6 L/min*m2. Mean time between right heart catheterization and study inclusion was 18 ± 10 months. At time of study, six IPAH patients were in WHO FC II and 10 in WHO FC III. Fifteen patients were treated with an endothelin-receptor antagonist (ERA), 14 patients with a phosphodiesterase type 5 inhibitor (PDE5-I), 1 patient with a soluble guanylate cyclase stimulator (sGC-S) and 3 patients with a prostacyclin analog. Only one patient was treated with monotherapy and none of the patients received long-term oxygen treatment.
Matching of healthy control subjects to patients with IPAH was achieved for age, gender and BMI as intended. All tested CPET parameters were significantly reduced in IPAH patients compared to healthy control subjects. FEV1 and FEV1/FVC were significantly decreased in IPAH patients yet still within normal ranges. Levels of c-reactive protein (CRP) were < 5 mg/dl in all study subjects. Table 2 summarizes the baseline characteristics of the study subjects.
Table 2
Characteristics of patients with idiopathic pulmonary arterial hypertension (IPAH) and healthy subjects
Parameter
Groups
P-value
IPAH
Healthy subjects
n = 16
n = 10
Age [yr]
58 ± 16
58 ± 15
0.97
Gender female/male [n]
12/4
6/4
0.42a
BMI [kg/m2]
25 ± 6
24 ± 3
0.75
6MWD [m]
490 ± 100
638 ± 110
0.002
NT-proBNP [ng/l]
667 ± 594
68 ± 27
0.004
Cardiopulmonary exercise test (CPET)
 Workload max [W]
73 ± 32
130 ± 46
0.005
 Peak VO2/kg [ml/min/kg]
15 ± 4
23 ± 5
0.001
 Peak VO2 [l/min]
1.1 ± 0.4
1.7 ± 0.6
0.001
 EqCO2 at AT [l/min/l/min]
47 ± 7.6
32 ± 2.2
<0.001
 VO2 at AT [l/min]
0.8 ± 0.2
1.2 ± 0.2
0.002
 HR rest/max [/min]
78 ± 12/129 ± 28
77 ± 11/138 ± 18
0.90/0.35
 BP systolic rest/max [mm Hg]
102 ± 20/149 ± 30
118 ± 22/179 ± 22
0.06/0.01
 BP diastolic rest/max [mm Hg]
69 ± 12/80 ± 12
75 ± 10/81 ± 13
0.25/0.60
Pulmonary function test (PFT)
 FEV1 % predicted [%]
78 ± 13
94 ± 8
0.002
 FVC % predicted [%]
87 ± 13
95 ± 8
0.11
 FEV1/FVC [%]
86 ± 11
102 ± 7
<0.001
 DLCO % predicted [%]
76 ± 15
-
-
Data are presented as mean ± SD or numbers. P-values are calculated by Students’ t-test and aChi-Square-test. 6MWD 6-min walk distance, AT Anaerobic threshold, BMI Body mass index, BP Blood pressure, EqCO2 Respiratory equivalent for carbon dioxide, FEV1 Forced expiratory volume in 1 s, FVC Forced vital capacity, HR Heart rate, IPAH Idiopathic pulmonary arterial hypertension, NT-proBNP N-terminal prohormone of brain natriuretic peptide, VO2/kg Maximum oxygen consumption per kilogram

Before exercise patients with IPAH showed a differing composition of the T helper lymphocyte compartment and altered levels of circulating cytokines

There was no significant difference in absolute levels of leukocytes, lymphocytes, neutrophils and monocytes before exercise between IPAH patients and control subjects (Fig. 2). Within the CD4+ T helper lymphocyte compartment patients with IPAH showed elevated subsets of Th2 and regulatory T cells, while the subset of Th1/Th17 lymphocytes was reduced as compared to healthy subjects and as indicated by relative and absolute cell counts (all p < 0.05; two-way rANOVA; Figs. 4 and 5). Prior to exercise, at rest, patients with IPAH demonstrated elevated levels of IL-6 and TNF-alpha, whilst level of IL-4 was reduced (all p < 0.05; two-way ANOVA; Fig. 6).

Exercise caused a general increase in leukocytes and lymphocytes

Overall, exercise provoked a significant, transient elevation of absolute numbers of leukocytes, lymphocytes in patients with IPAH as well as in healthy subjects (all p < 0.001; one-way rANOVA; Fig. 2a-b). Given that no difference occurred between patients and healthy subjects, two-way rANOVA revealed the number of leukocytes and lymphocytes significantly depended on relation to exercise (p < 0.001 and p = 0.005), but not on IPAH (p = 0.63 and p = 0.28). The general increase of lymphocytes in patients with IPAH and healthy was also found for T lymphocytes (both p < 0.01; one-way rANOVA), and by a non-significant trend for B lymphocytes, T helper lymphocytes and cytotoxic T lymphocytes (Fig. 3a-b and e-f). Interestingly, exercise led to a relative reduction of B lymphocytes in healthy subjects but not in patients with IPAH (Fig. 3b-d). However, exercise did not influence the level of TCR-γδ lymphocytes, nor natural killer cells or natural killer T lymphocytes (data not shown).

Exercise caused a relative reduction of Th17 lymphocytes in patients with IPAH

Within the T helper lymphocyte compartment throughout exercise no significant differences occurred regarding the subsets of Th1, Th2, Th1/Th17 and regulatory T lymphocytes comparing patients with IPAH and healthy subjects (Figs. 4 and 5). Exercise, however, caused a relative reduction of Th17 lymphocytes in patients with IPAH, but not in healthy subjects (p = 0.049; one-way rANOVA; Fig. 4). However, the differences appeared to be very small with significant overlap in standard deviation and no differences were observed in regard of absolute numbers of Th17 cells (Fig. 4).

Exercise caused a reduction of IL-6 and IL-1-beta in patients with IPAH

Exercise caused a sustained reduction of the IL-6 level in patients with IPAH but not in healthy subjects (p = 0.022; one-way rANOVA; Fig. 6a). Since healthy subjects showed only a marginal increase in IL-6 following exercise, two-way rANOVA revealed that the level of IL-6 significantly depended on IPAH (p = 0.009), but not on relation to exercise (p = 0.094). In addition, the immediate and 1 h lasting reduction of the IL-6 level correlated significantly with the peak VO2/kg in patients with IPAH (p = 0.022 and p = 0.025; Fig. 7). Furthermore, exercise caused a reduction of the IL-1-beta level in patients with IPAH but not healthy subjects (p = 0.022; one-way rANOVA; Fig. 6e). Herein, two-way rANOVA revealed no significant dependence. The change of IL-6 and IL-1-beta was not significantly related to the time to exhaustion in the CPET and findings were not influenced by change in hemoconcentration (data not shown). Exercise did not influence differently the level of TNF-alpha, IL-1ra, IL-12p70, IL-13 or IL-10 in patients with IPAH as compared to healthy subjects (Fig. 6). The cytokines IL-17 and IL-2 were detectable in only 1 out of 16 patients with IPAH, respectively.

Discussion

The development of a chronic systemic inflammatory state has been demonstrated repeatedly in patients with IPAH. This inflammatory state is indicated by elevated levels of circulating inflammation markers, such as IL-6, and altered composition of peripheral blood mononuclear cells (PBMC), such as regulatory T lymphocytes or CCR6+ T lymphocytes [5, 18, 22, 25]. In accordance, we found, prior to exercise, an elevated level of IL-6 and altered composition of the CD4+ T lymphocyte subsets in the peripheral blood of patients with IPAH. Within the CD4+ T lymphocyte compartment Th1/Th17 lymphocytes were depleted in blood samples from patients with IPAH and Th2 as well as Treg lymphocytes were elevated. While Th17 lymphocytes were not altered prior to exercise.
The depletion of the CXCR3+/CCR4/CCR6+ (Th1/Th17) together with the observed increased expression of CCL20, the ligand of CCR6, in lungs explanted from patients with IPAH provide some evidence of the recruitment of specific T helper lymphocytes to IPAH lungs [18]. The CXCL10, ligand of CXCR3, was also found to be elevated in IPAH lungs and blood samples, which might favor the recruitment of CXCR3+ effector T cells [13, 28]. These inflammatory processes might therefore be inextricably linked to a specific (presumably a Th1/Th17-predominant) (peri-) vascular inflammation found in IPAH.
According to our data, exercise seemed to elicit a specific modulation of the circulating T lymphocyte subsets in patients with IPAH, a modulation of the chronic systemic inflammatory state. Exercise may shift the imbalance of the inflammatory status towards equilibrium or excess of the anti-inflammatory (or immune-regulatory) activity. A single bout of cycling exercise caused an immediate relative decrease of Th17 lymphocytes in patients compared to healthy subjects. However, the effect was small-sized and prior to exercise no differences in Th17 levels were observed. An increased Th17 immune polarization as part of the dysregulated immune response in patients with IPAH has recently been demonstrated [12]. This study further substantiate autoimmunity as contribution to the development or progression of IPAH [12].
Environmental stress such as exercise could induce a redistribution of T lymphocytes within lymphoid and non-lymphoid organs. A uniform response pattern seems to exist with a decrease in lymphocyte numbers in the spleen, accompanied by an increase in lymphocyte numbers in the lung, bone marrow and Peyer’s patches [2, 15, 26]. Accordingly, we observed a transient increase in the circulating lymphocyte numbers and also leukocyte numbers following exercise. The distribution of circulating lymphocytes is tightly controlled by their ability to interact with endothelial cells at different anatomical sites, which enables cell trafficking and defines the kinetics of immune regulation [15]. Exercise might alter the site- and disease-specific repertoire of adhesion molecules on lymphocytes and, on the other hand, the expression of corresponding ligands on endothelial cells. This might be elicited by exercise-induced alterations in circulating cytokine levels [14, 19, 29]. Moderate exercise might, for instance, result in a Th1/Th2 imbalance in favor of Th1 in healthy subjects [29]. Moreover, the addition of lymphocytes from the marginated pool into the circulation in response to exercise may influence lymphocyte redistribution by itself, since the mobilized cells may have different functional abilities compared to those already in the circulation [26]. However, redistribution of lymphocytes has mostly been demonstrated for multiple exercise training or endurance exercise protocols. Another mechanism for the modulation of lymphocyte populations might be the differentiation of lymphocytes. A rapid modulation following single exercise training might result from an (trans-) differentiation of lymphocyte from precursor cells, which could be mediated by circulating cytokines.
A high level of the cytokine IL-6 (4th quartile), amongst other cytokines such as IL-2, IL-8, IL-10, and IL-12p70, were associated with poor overall survival in patients with IPAH or hereditary PAH (HPAH) [22]. The systemic inflammatory response may reflect disease activity. We observed a sustained reduction of circulating IL-1-beta and IL-6 following exercise in patients with IPAH. In contrary to this finding several studies have reported an exercise-induced release of IL-6 by contracting muscle cells in health and disease state. It is believed that the exercise-induced secretion of IL-6 to be a transcriptional event in skeletal muscle cells and was observed to be depended on exercise intensity and duration [7]. However, since exercise duration was short in our study, this mechanism was unlikely to influence post-exercise level of IL-6 in patients with IPAH. Thus further mechanisms such as internalization following receptor binding (e.g. in the process of lymphocyte differentiation or in endothelial cells) might account for the observed reduction. Furthermore, we cannot rule out that pharmacological treatment influences the exercise-induced IL-6 response, since all patients were on PAH targeted drugs. An influence of drug intake such as indomethacin on exercise-induced IL-6 response has been shown previously [7]. IL-6 has been linked to the pathogenesis of PAH. Administration of IL-6 is sufficient to cause pulmonary vascular remodeling in rodents and its over-expression spontaneously caused experimental pulmonary hypertension (PH) [21]. Less is known in regard of the pathogenic role of IL-1-beta in the setting of IPAH. The level seemed to be elevated in patients with IPAH or HPAH, but was not associated with survival [21, 22].
With the present explorative study, we looked into short-term, immediate effects of exercise on the systemic inflammatory state in a limited number of patients with IPAH. The relative small sample size, the short-term measuring points and the lack of bioelectrical indices such as visceral fat percentage are limitations to the study. With regard to a long-term effect it would be of great interest to evaluate the effect of a controlled, supervised training on the systemic inflammatory state in patients with (I)PAH. Our results provide first evidence for further investigations of this topic.

Conclusion

We demonstrate a link between the immune system and physical exercise in patients with IPAH. Exercise seems to elicit a modulation or redistribution of the circulating T lymphocyte subsets and an amelioration of the altered circulating cytokine profile in patients with IPAH, and does not aggravate the inflammatory state. The single bout of exercise in IPAH patients seems to be safe from an immune and inflammatory point of view.

Acknowledgements

The authors are thankful to Urte Matschl and to the members of the FACS core facility for their excellent technical support.

Funding

The study was granted by the University Medical Center Hamburg-Eppendorf.

Availability of data and materials

The database is not open-source due to protection of patient/participant confidentiality. However, data are available from the corresponding author upon request.

Authors’ contributions

Conceived and designed the experiments: SY and LH. Performed the experiments: ER, AG and LH. Analysed the data: ER and LH. Wrote the manuscript: LH. Critically reviewed the manuscript: ER, SY, NL, JKH, HJB, DA, EG, RHB, CB and HK. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
The study was approved by the local ethic committee (Ethik-Kommission der Ärztekammer Hamburg, Weidestr. 122 b, 22083 Hamburg, Germany; reference number PV4333), and all participants gave written informed consent.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8:639–46.CrossRefPubMed Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8:639–46.CrossRefPubMed
2.
Zurück zum Zitat Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM. Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun. 2011;25:658–66.CrossRefPubMedPubMedCentral Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM. Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun. 2011;25:658–66.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Chan L, Chin LM, Kennedy M, Woolstenhulme JG, Nathan SD, Weinstein AA, Connors G, Weir NA, Drinkard B, Lamberti J, Keyser RE. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013;143:333–43.CrossRefPubMed Chan L, Chin LM, Kennedy M, Woolstenhulme JG, Nathan SD, Weinstein AA, Connors G, Weir NA, Drinkard B, Lamberti J, Keyser RE. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013;143:333–43.CrossRefPubMed
4.
Zurück zum Zitat Clark S, Page E, Ford T, Metcalf R, Pozniak A, Nelson M, Henderson DC, Asboe D, Gotch F, Gazzard BG, Kelleher P. Reduced T(H)1/T(H)17 CD4 T-cell numbers are associated with impaired purified protein derivative-specific cytokine responses in patients with HIV-1 infection. J Allergy Clin Immunol. 2011;128:838–846.e835.CrossRefPubMed Clark S, Page E, Ford T, Metcalf R, Pozniak A, Nelson M, Henderson DC, Asboe D, Gotch F, Gazzard BG, Kelleher P. Reduced T(H)1/T(H)17 CD4 T-cell numbers are associated with impaired purified protein derivative-specific cytokine responses in patients with HIV-1 infection. J Allergy Clin Immunol. 2011;128:838–846.e835.CrossRefPubMed
5.
Zurück zum Zitat Cracowski JL, Chabot F, Labarere J, Faure P, Degano B, Schwebel C, Chaouat A, Reynaud-Gaubert M, Cracowski C, Sitbon O, Yaici A, Simonneau G, Humbert M. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. Eur Respir J. 2014;43:915–7.CrossRefPubMed Cracowski JL, Chabot F, Labarere J, Faure P, Degano B, Schwebel C, Chaouat A, Reynaud-Gaubert M, Cracowski C, Sitbon O, Yaici A, Simonneau G, Humbert M. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. Eur Respir J. 2014;43:915–7.CrossRefPubMed
6.
Zurück zum Zitat Ehlken N, Lichtblau M, Klose H, Weidenhammer J, Fischer C, Nechwatal R, Uiker S, Halank M, Olsson K, Seeger W, Gall H, Rosenkranz S, Wilkens H, Mertens D, Seyfarth HJ, Opitz C, Ulrich S, Egenlauf B, Grunig E. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016;37:35–44.CrossRefPubMed Ehlken N, Lichtblau M, Klose H, Weidenhammer J, Fischer C, Nechwatal R, Uiker S, Halank M, Olsson K, Seeger W, Gall H, Rosenkranz S, Wilkens H, Mertens D, Seyfarth HJ, Opitz C, Ulrich S, Egenlauf B, Grunig E. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016;37:35–44.CrossRefPubMed
7.
Zurück zum Zitat Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMed Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev. 2006;12:6–33.PubMed
8.
Zurück zum Zitat Galie N, Corris PA, Frost A, Girgis RE, Granton J, Jing ZC, Klepetko W, McGoon MD, McLaughlin VV, Preston IR, Rubin LJ, Sandoval J, Seeger W, Keogh A. Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D60–72.CrossRefPubMed Galie N, Corris PA, Frost A, Girgis RE, Granton J, Jing ZC, Klepetko W, McGoon MD, McLaughlin VV, Preston IR, Rubin LJ, Sandoval J, Seeger W, Keogh A. Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D60–72.CrossRefPubMed
9.
Zurück zum Zitat Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903–75.CrossRefPubMed Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903–75.CrossRefPubMed
10.
Zurück zum Zitat Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease, Nature reviews. Immunology. 2011;11:607–15.PubMed Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease, Nature reviews. Immunology. 2011;11:607–15.PubMed
11.
Zurück zum Zitat Grunig E, Lichtblau M, Ehlken N, Ghofrani HA, Reichenberger F, Staehler G, Halank M, Fischer C, Seyfarth HJ, Klose H, Meyer A, Sorichter S, Wilkens H, Rosenkranz S, Opitz C, Leuchte H, Karger G, Speich R, Nagel C. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J. 2012;40:84–92.CrossRefPubMed Grunig E, Lichtblau M, Ehlken N, Ghofrani HA, Reichenberger F, Staehler G, Halank M, Fischer C, Seyfarth HJ, Klose H, Meyer A, Sorichter S, Wilkens H, Rosenkranz S, Opitz C, Leuchte H, Karger G, Speich R, Nagel C. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J. 2012;40:84–92.CrossRefPubMed
12.
Zurück zum Zitat Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht BN, Humbert M, Perros F. Th17 polarization in pulmonary arterial hypertension. Chest. 2015;147(6):1610–20.CrossRefPubMed Hautefort A, Girerd B, Montani D, Cohen Kaminsky S, Price L, Lambrecht BN, Humbert M, Perros F. Th17 polarization in pulmonary arterial hypertension. Chest. 2015;147(6):1610–20.CrossRefPubMed
13.
Zurück zum Zitat Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung. 2010;188:191–7.CrossRefPubMedPubMedCentral Heresi GA, Aytekin M, Newman J, Dweik RA. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung. 2010;188:191–7.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kakanis MW, Peake J, Brenu EW, Simmonds M, Gray B, Marshall-Gradisnik SM. T helper cell cytokine profiles after endurance exercise. J Interferon Cytokine Res. 2014;34:699–706.CrossRefPubMed Kakanis MW, Peake J, Brenu EW, Simmonds M, Gray B, Marshall-Gradisnik SM. T helper cell cytokine profiles after endurance exercise. J Interferon Cytokine Res. 2014;34:699–706.CrossRefPubMed
15.
Zurück zum Zitat Kruger K, Mooren FC. T cell homing and exercise. Exerc Immunol Rev. 2007;13:37–54.PubMed Kruger K, Mooren FC. T cell homing and exercise. Exerc Immunol Rev. 2007;13:37–54.PubMed
16.
Zurück zum Zitat Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:109502.CrossRefPubMed Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:109502.CrossRefPubMed
17.
Zurück zum Zitat Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher CG, Gosselink R, O'Donnell DE, Puente-Maestu L, Schols AM, Singh S, Whipp BJ. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29:185–209.CrossRefPubMed Palange P, Ward SA, Carlsen KH, Casaburi R, Gallagher CG, Gosselink R, O'Donnell DE, Puente-Maestu L, Schols AM, Singh S, Whipp BJ. Recommendations on the use of exercise testing in clinical practice. Eur Respir J. 2007;29:185–209.CrossRefPubMed
18.
Zurück zum Zitat Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185:311–21.CrossRefPubMed Perros F, Dorfmuller P, Montani D, Hammad H, Waelput W, Girerd B, Raymond N, Mercier O, Mussot S, Cohen-Kaminsky S, Humbert M, Lambrecht BN. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;185:311–21.CrossRefPubMed
19.
Zurück zum Zitat Perry C, Pick M, Bdolach N, Hazan-Halevi I, Kay S, Berr I, Reches A, Harishanu Y, Grisaru D. Endurance exercise diverts the balance between Th17 cells and regulatory T cells. PLoS One. 2013;8:e74722.CrossRefPubMedPubMedCentral Perry C, Pick M, Bdolach N, Hazan-Halevi I, Kay S, Berr I, Reches A, Harishanu Y, Grisaru D. Endurance exercise diverts the balance between Th17 cells and regulatory T cells. PLoS One. 2013;8:e74722.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (Bethesda, Md : 1985). 2005;98:1154–62.CrossRef Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (Bethesda, Md : 1985). 2005;98:1154–62.CrossRef
21.
Zurück zum Zitat Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.CrossRefPubMedPubMedCentral Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–75.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122:920–7.CrossRefPubMed Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, Trembath RC, Jennings S, Barker L, Nicklin P, Walker C, Budd DC, Pepke-Zaba J, Morrell NW. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122:920–7.CrossRefPubMed
23.
Zurück zum Zitat Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson AJ, Agrawal R, Rabinovitch M, Ambler K, Long CS, Voelkel NF, Nicolls MR. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res. 2011;109:867–79.CrossRefPubMedPubMedCentral Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson AJ, Agrawal R, Rabinovitch M, Ambler K, Long CS, Voelkel NF, Nicolls MR. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res. 2011;109:867–79.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters-Golden M, Voelkel NF, Nicolls MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5:200ra117.CrossRefPubMedPubMedCentral Tian W, Jiang X, Tamosiuniene R, Sung YK, Qian J, Dhillon G, Gera L, Farkas L, Rabinovitch M, Zamanian RT, Inayathullah M, Fridlib M, Rajadas J, Peters-Golden M, Voelkel NF, Nicolls MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5:200ra117.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration. 2008;75:272–80.CrossRefPubMed Ulrich S, Nicolls MR, Taraseviciene L, Speich R, Voelkel N. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension. Respiration. 2008;75:272–80.CrossRefPubMed
26.
Zurück zum Zitat Walsh NP, Gleeson M, Shephard RJ, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.PubMed Walsh NP, Gleeson M, Shephard RJ, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.PubMed
27.
Zurück zum Zitat Weinstein AA, Chin LM, Keyser RE, Kennedy M, Nathan SD, Woolstenhulme JG, Connors G, Chan L. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir Med. 2013;107:778–84.CrossRefPubMedPubMedCentral Weinstein AA, Chin LM, Keyser RE, Kennedy M, Nathan SD, Woolstenhulme JG, Connors G, Chan L. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir Med. 2013;107:778–84.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yang T, Li ZN, Chen G, Gu Q, Ni XH, Zhao ZH, Ye J, Meng XM, Liu ZH, Xiong CM, He JG. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung. 2014;43:322–7.CrossRefPubMed Yang T, Li ZN, Chen G, Gu Q, Ni XH, Zhao ZH, Ye J, Meng XM, Liu ZH, Xiong CM, He JG. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung. 2014;43:322–7.CrossRefPubMed
29.
Zurück zum Zitat Zhao G, Zhou S, Davie A, Su Q. Effects of moderate and high intensity exercise on T1/T2 balance. Exerc Immunol Rev. 2012;18:98–114.PubMed Zhao G, Zhou S, Davie A, Su Q. Effects of moderate and high intensity exercise on T1/T2 balance. Exerc Immunol Rev. 2012;18:98–114.PubMed
Metadaten
Titel
Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension
verfasst von
Lars Harbaum
Emilia Renk
Sara Yousef
Antonia Glatzel
Nicole Lüneburg
Jan K. Hennigs
Tim Oqueka
Hans J. Baumann
Djordje Atanackovic
Ekkehard Grünig
Rainer H. Böger
Carsten Bokemeyer
Hans Klose
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2016
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0301-6

Weitere Artikel der Ausgabe 1/2016

BMC Pulmonary Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.