Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5/2020

10.02.2020 | Original Article

Acute In Vivo Functional Assessment of a Biodegradable Stentless Elastomeric Tricuspid Valve

verfasst von: Garrett N. Coyan, Lindemberg da Mota Silveira-Filho, Yasumoto Matsumura, Samuel K. Luketich, William Katz, Vinay Badhwar, William R. Wagner, Antonio D’Amore

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Degradable heart valves based on in situ tissue regeneration have been proposed as potentially durable and non-thrombogenic prosthetic alternatives. We evaluated the acute in vivo function, microstructure, mechanics, and thromboresistance of a stentless biodegradable tissue-engineered heart valve (TEHV) in the tricuspid position. Biomimetic stentless tricuspid valves were fabricated with poly(carbonate urethane)urea (PCUU) by double-component deposition (DCD) processing to mimic native valve mechanics and geometry. Five swine then underwent 24-h TEHV implantation in the tricuspid position. Echocardiography demonstrated good leaflet motion and no prolapse and trace to mild regurgitation in all but one animal. Histology revealed patches of proteinaceous deposits with no cellular uptake. SEM demonstrated retained scaffold microarchitecture with proteinaceous deposits but no platelet aggregation or thrombosis. Explanted PCUU leaflet thickness and mechanical anisotropy were comparable with native tricuspid leaflets. Bioinspired, elastomeric, stentless TEHVs fabricated by DCD were readily implantable and demonstrated good acute function in the tricuspid position.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Delling, F. N., & Vasan, R. S. (2014). Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation, 129, 2158–2170.CrossRef Delling, F. N., & Vasan, R. S. (2014). Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation, 129, 2158–2170.CrossRef
2.
Zurück zum Zitat Neidenbach, R., Niwa, K., Oto, O., et al. (2018). Improving medical care and prevention in adults with congenital heart disease-reflections on a global problem-part I: development of congenital cardiology, epidemiology, clinical aspects, heart failure, cardiac arrhythmia. Cardiovascular Diagnosis and Therapy, 8, 705–715.CrossRef Neidenbach, R., Niwa, K., Oto, O., et al. (2018). Improving medical care and prevention in adults with congenital heart disease-reflections on a global problem-part I: development of congenital cardiology, epidemiology, clinical aspects, heart failure, cardiac arrhythmia. Cardiovascular Diagnosis and Therapy, 8, 705–715.CrossRef
3.
Zurück zum Zitat Iung, B., & Vahanian, A. (2011). Epidemiology of valvular heart disease in the adult. Nature Reviews. Cardiology, 8, 162–172.CrossRef Iung, B., & Vahanian, A. (2011). Epidemiology of valvular heart disease in the adult. Nature Reviews. Cardiology, 8, 162–172.CrossRef
4.
Zurück zum Zitat Hoffman, J. I. E., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39, 1890–1900.CrossRef Hoffman, J. I. E., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39, 1890–1900.CrossRef
5.
Zurück zum Zitat Grunkemeier, G. L., Furnary, A. P., Wu, Y., Wang, L., & Starr, A. (2012). Durability of pericardial versus porcine bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 144, 1381–1386.CrossRef Grunkemeier, G. L., Furnary, A. P., Wu, Y., Wang, L., & Starr, A. (2012). Durability of pericardial versus porcine bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 144, 1381–1386.CrossRef
6.
Zurück zum Zitat Makkar, R. R., Fontana, G., Jilaihawi, H., et al. (2015). Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. The New England Journal of Medicine, 373, 2015–2024.CrossRef Makkar, R. R., Fontana, G., Jilaihawi, H., et al. (2015). Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. The New England Journal of Medicine, 373, 2015–2024.CrossRef
7.
Zurück zum Zitat Shinoka, T., & Miyachi, H. (2016). Current status of tissue engineering heart valve. World Journal for Pediatric and Congenital Heart Surgery, 7, 677–684.CrossRef Shinoka, T., & Miyachi, H. (2016). Current status of tissue engineering heart valve. World Journal for Pediatric and Congenital Heart Surgery, 7, 677–684.CrossRef
8.
Zurück zum Zitat Emmert, M. Y., Schmitt, B. A., Loerakker, S., et al. (2018). Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Science Translational Medicine, 10. Emmert, M. Y., Schmitt, B. A., Loerakker, S., et al. (2018). Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Science Translational Medicine, 10.
9.
Zurück zum Zitat Zund, G., Breuer, C., Shinoka, T., et al. (1997). The in vitro construction of a tissue engineered bioprosthetic heart valve. European Journal of Cardio-Thoracic Surgery, 11, 493–497.CrossRef Zund, G., Breuer, C., Shinoka, T., et al. (1997). The in vitro construction of a tissue engineered bioprosthetic heart valve. European Journal of Cardio-Thoracic Surgery, 11, 493–497.CrossRef
10.
Zurück zum Zitat Emmert, M. Y., Weber, B., Behr, L., et al. (2014). Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. European Journal of Cardio-Thoracic Surgery, 45, 61–68.CrossRef Emmert, M. Y., Weber, B., Behr, L., et al. (2014). Transcatheter aortic valve implantation using anatomically oriented, marrow stromal cell-based, stented, tissue-engineered heart valves: technical considerations and implications for translational cell-based heart valve concepts. European Journal of Cardio-Thoracic Surgery, 45, 61–68.CrossRef
11.
Zurück zum Zitat Tseng, H., Puperi, D. S., Kim, E. J., et al. (2014). Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel–fiber composites for heart valve tissue engineering. Tissue Engineering Part A, 20, 2634–2645.CrossRef Tseng, H., Puperi, D. S., Kim, E. J., et al. (2014). Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel–fiber composites for heart valve tissue engineering. Tissue Engineering Part A, 20, 2634–2645.CrossRef
12.
Zurück zum Zitat Yacoub, M. H., & Takkenberg, J. J. M. (2005). Will heart valve tissue engineering change the world? Nature Clinical Practice. Cardiovascular Medicine, 2, 60–61.CrossRef Yacoub, M. H., & Takkenberg, J. J. M. (2005). Will heart valve tissue engineering change the world? Nature Clinical Practice. Cardiovascular Medicine, 2, 60–61.CrossRef
13.
Zurück zum Zitat Takewa, Y., Sumikura, H., Kishimoto, S., et al. (2018). Implanted in-body tissue-engineered heart valve can adapt the histological structure to the environment. ASAIO Journal, 64, 395–405.CrossRef Takewa, Y., Sumikura, H., Kishimoto, S., et al. (2018). Implanted in-body tissue-engineered heart valve can adapt the histological structure to the environment. ASAIO Journal, 64, 395–405.CrossRef
14.
Zurück zum Zitat Reimer, J., Syedain, Z., Haynie, B., Lahti, M., Berry, J., & Tranquillo, R. (2017). Implantation of a tissue-engineered tubular heart valve in growing lambs. Annals of Biomedical Engineering, 45, 439–451.CrossRef Reimer, J., Syedain, Z., Haynie, B., Lahti, M., Berry, J., & Tranquillo, R. (2017). Implantation of a tissue-engineered tubular heart valve in growing lambs. Annals of Biomedical Engineering, 45, 439–451.CrossRef
15.
Zurück zum Zitat Kluin, J., Talacua, H., Smits, A. I., et al. (2017). In situ heart valve tissue engineering using a bioresorbable elastomeric implant-from material design to 12 months follow-up in sheep. Biomaterials, 125, 101–117.CrossRef Kluin, J., Talacua, H., Smits, A. I., et al. (2017). In situ heart valve tissue engineering using a bioresorbable elastomeric implant-from material design to 12 months follow-up in sheep. Biomaterials, 125, 101–117.CrossRef
16.
Zurück zum Zitat Jana, S., Tefft, B. J., Spoon, D. B., & Simari, R. D. (2014). Scaffolds for tissue engineering of cardiac valves. Acta Biomaterialia, 10, 2877–2893.CrossRef Jana, S., Tefft, B. J., Spoon, D. B., & Simari, R. D. (2014). Scaffolds for tissue engineering of cardiac valves. Acta Biomaterialia, 10, 2877–2893.CrossRef
17.
Zurück zum Zitat D’Amore, A., Luketich, S. K., Raffa, G. M., et al. (2018). Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials, 150, 25–37.CrossRef D’Amore, A., Luketich, S. K., Raffa, G. M., et al. (2018). Heart valve scaffold fabrication: bioinspired control of macro-scale morphology, mechanics and micro-structure. Biomaterials, 150, 25–37.CrossRef
18.
Zurück zum Zitat Hobson, C. M., Amoroso, N. J., Amini, R., et al. (2015). Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. Journal of Biomedical Materials Research. Part A, 103, 3101–3106.CrossRef Hobson, C. M., Amoroso, N. J., Amini, R., et al. (2015). Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. Journal of Biomedical Materials Research. Part A, 103, 3101–3106.CrossRef
19.
Zurück zum Zitat Coyan, G. N., D’Amore, A., Matsumura, Y., et al. (2018). In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. The Journal of Thoracic and Cardiovascular Surgery. Coyan, G. N., D’Amore, A., Matsumura, Y., et al. (2018). In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. The Journal of Thoracic and Cardiovascular Surgery.
20.
Zurück zum Zitat Hong, Y., Fujimoto, K., Hashizume, R., et al. (2008). Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules, 9, 1200–1207.CrossRef Hong, Y., Fujimoto, K., Hashizume, R., et al. (2008). Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules, 9, 1200–1207.CrossRef
21.
Zurück zum Zitat D’Amore, A., Stella, J. A., Wagner, W. R., & Sacks, M. S. (2010). Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials, 31, 5345–5354.CrossRef D’Amore, A., Stella, J. A., Wagner, W. R., & Sacks, M. S. (2010). Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials, 31, 5345–5354.CrossRef
22.
Zurück zum Zitat Hasan, A., Ragaert, K., Swieszkowski, W., et al. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 47, 1949–1963.CrossRef Hasan, A., Ragaert, K., Swieszkowski, W., et al. (2014). Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics, 47, 1949–1963.CrossRef
23.
Zurück zum Zitat Motta, S. E., Lintas, V., Fioretta, E. S., Hoerstrup, S. P., & Emmert, M. Y. (2018). Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions. Expert Review of Medical Devices, 15, 35–45.CrossRef Motta, S. E., Lintas, V., Fioretta, E. S., Hoerstrup, S. P., & Emmert, M. Y. (2018). Off-the-shelf tissue engineered heart valves for in situ regeneration: current state, challenges and future directions. Expert Review of Medical Devices, 15, 35–45.CrossRef
24.
Zurück zum Zitat Hasan, A., Saliba, J., Pezeshgi Modarres, H., et al. (2016). Micro and nanotechnologies in heart valve tissue engineering. Biomaterials, 103, 278–292.CrossRef Hasan, A., Saliba, J., Pezeshgi Modarres, H., et al. (2016). Micro and nanotechnologies in heart valve tissue engineering. Biomaterials, 103, 278–292.CrossRef
25.
Zurück zum Zitat Amoroso, N. J., D’Amore, A., Hong, Y., Wagner, W. R., & Sacks, M. S. (2011). Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication conditions, fiber topology, and mechanical properties. Advanced Materials, 23, 106–111.CrossRef Amoroso, N. J., D’Amore, A., Hong, Y., Wagner, W. R., & Sacks, M. S. (2011). Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication conditions, fiber topology, and mechanical properties. Advanced Materials, 23, 106–111.CrossRef
26.
Zurück zum Zitat Syedain, Z., Reimer, J., Schmidt, J., et al. (2015). 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials, 73, 175–184.CrossRef Syedain, Z., Reimer, J., Schmidt, J., et al. (2015). 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials, 73, 175–184.CrossRef
27.
Zurück zum Zitat Theodoridis, K., Tudorache, I., Cebotari, S., et al. (2017). Six-year-old sheep as a clinically relevant large animal model for aortic valve replacement using tissue-engineered grafts based on decellularized allogenic matrix. Tissue Engineering. Part C, Methods, 23, 953–963.CrossRef Theodoridis, K., Tudorache, I., Cebotari, S., et al. (2017). Six-year-old sheep as a clinically relevant large animal model for aortic valve replacement using tissue-engineered grafts based on decellularized allogenic matrix. Tissue Engineering. Part C, Methods, 23, 953–963.CrossRef
28.
Zurück zum Zitat Amoroso, N. J., D’Amore, A., Hong, Y., Rivera, C. P., Sacks, M. S., & Wagner, W. R. (2012). Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomaterialia, 8, 4268–4277.CrossRef Amoroso, N. J., D’Amore, A., Hong, Y., Rivera, C. P., Sacks, M. S., & Wagner, W. R. (2012). Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomaterialia, 8, 4268–4277.CrossRef
29.
Zurück zum Zitat Capulli, A. K., Emmert, M. Y., Pasqualini, F. S., et al. (2017). JetValve: rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials, 133, 229–241.CrossRef Capulli, A. K., Emmert, M. Y., Pasqualini, F. S., et al. (2017). JetValve: rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials, 133, 229–241.CrossRef
30.
Zurück zum Zitat Kunadian, B., Vijayalakshmi, K., Thornley, A. R., et al. (2007). Meta-analysis of valve hemodynamics and left ventricular mass regression for stentless versus stented aortic valves. The Annals of Thoracic Surgery, 84, 73–78.CrossRef Kunadian, B., Vijayalakshmi, K., Thornley, A. R., et al. (2007). Meta-analysis of valve hemodynamics and left ventricular mass regression for stentless versus stented aortic valves. The Annals of Thoracic Surgery, 84, 73–78.CrossRef
31.
Zurück zum Zitat Clavel, M. A., Webb, J. G., Pibarot, P., et al. (2009). Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. Journal of the American College of Cardiology, 53, 1883–1891.CrossRef Clavel, M. A., Webb, J. G., Pibarot, P., et al. (2009). Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. Journal of the American College of Cardiology, 53, 1883–1891.CrossRef
32.
Zurück zum Zitat Navia, J. L., Brozzi, N., Doi, K., et al. (2010). Implantation technique and early echocardiographic performance of newly designed stentless mitral bioprosthesis. ASAIO Journal, 56, 497–503.CrossRef Navia, J. L., Brozzi, N., Doi, K., et al. (2010). Implantation technique and early echocardiographic performance of newly designed stentless mitral bioprosthesis. ASAIO Journal, 56, 497–503.CrossRef
33.
Zurück zum Zitat Kainuma, S., Kasegawa, H., Miyagawa, S., et al. (2015). In vivo assessment of novel stentless valve in the mitral position. Circulation Journal, 79, 553–559.CrossRef Kainuma, S., Kasegawa, H., Miyagawa, S., et al. (2015). In vivo assessment of novel stentless valve in the mitral position. Circulation Journal, 79, 553–559.CrossRef
34.
Zurück zum Zitat Nishida, H., Kasegawa, H., Kin, H., & Takanashi, S. (2016). Early clinical outcome of mitral valve replacement using a newly designed stentless mitral valve for failure of initial mitral valve repair. The Heart Surgery Forum, 19, E306–E3E7.CrossRef Nishida, H., Kasegawa, H., Kin, H., & Takanashi, S. (2016). Early clinical outcome of mitral valve replacement using a newly designed stentless mitral valve for failure of initial mitral valve repair. The Heart Surgery Forum, 19, E306–E3E7.CrossRef
35.
Zurück zum Zitat Nistal, F., García-Martínez, V., Arbe, E., et al. (1990). In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 99, 1074–1081.CrossRef Nistal, F., García-Martínez, V., Arbe, E., et al. (1990). In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 99, 1074–1081.CrossRef
36.
Zurück zum Zitat Fallon, A. M., Goodchild, T. T., Cox, J. L., & Matheny, R. G. (2014). In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. The Journal of Thoracic and Cardiovascular Surgery, 148, 333–40. e1.CrossRef Fallon, A. M., Goodchild, T. T., Cox, J. L., & Matheny, R. G. (2014). In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. The Journal of Thoracic and Cardiovascular Surgery, 148, 333–40. e1.CrossRef
37.
Zurück zum Zitat Zafar, F., Hinton, R. B., Moore, R. A., et al. (2015). Physiological growth, remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. Journal of the American College of Cardiology, 66, 877–888.CrossRef Zafar, F., Hinton, R. B., Moore, R. A., et al. (2015). Physiological growth, remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. Journal of the American College of Cardiology, 66, 877–888.CrossRef
38.
Zurück zum Zitat Mosala Nezhad, Z., Poncelet, A., de Kerchove, L., et al. (2017). CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization. Interactive Cardiovascular and Thoracic Surgery, 24, 90–98.CrossRef Mosala Nezhad, Z., Poncelet, A., de Kerchove, L., et al. (2017). CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization. Interactive Cardiovascular and Thoracic Surgery, 24, 90–98.CrossRef
39.
Zurück zum Zitat Zaidi, A. H., Nathan, M., Emani, S., et al. (2014). Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. The Journal of Thoracic and Cardiovascular Surgery, 148, 2216–2214 25.e1.CrossRef Zaidi, A. H., Nathan, M., Emani, S., et al. (2014). Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. The Journal of Thoracic and Cardiovascular Surgery, 148, 2216–2214 25.e1.CrossRef
40.
Zurück zum Zitat Nelson, J. S., Heider, A., Si, M. S., & Ohye, R. G. (2016). Evaluation of explanted CorMatrix intracardiac patches in children with congenital heart disease. The Annals of Thoracic Surgery, 102, 1329–1335.CrossRef Nelson, J. S., Heider, A., Si, M. S., & Ohye, R. G. (2016). Evaluation of explanted CorMatrix intracardiac patches in children with congenital heart disease. The Annals of Thoracic Surgery, 102, 1329–1335.CrossRef
41.
Zurück zum Zitat D’Amore, A., Yoshizumi, T., Luketich, S. K., et al. (2016). Bi-layered polyurethane-extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials, 107, 1–14.CrossRef D’Amore, A., Yoshizumi, T., Luketich, S. K., et al. (2016). Bi-layered polyurethane-extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials, 107, 1–14.CrossRef
42.
Zurück zum Zitat Takanari, K., Hashizume, R., Hong, Y., et al. (2017). Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials, 113, 31–41.CrossRef Takanari, K., Hashizume, R., Hong, Y., et al. (2017). Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials, 113, 31–41.CrossRef
Metadaten
Titel
Acute In Vivo Functional Assessment of a Biodegradable Stentless Elastomeric Tricuspid Valve
verfasst von
Garrett N. Coyan
Lindemberg da Mota Silveira-Filho
Yasumoto Matsumura
Samuel K. Luketich
William Katz
Vinay Badhwar
William R. Wagner
Antonio D’Amore
Publikationsdatum
10.02.2020
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5/2020
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-020-09960-z

Weitere Artikel der Ausgabe 5/2020

Journal of Cardiovascular Translational Research 5/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.