Skip to main content
Erschienen in:

03.08.2023 | Imaging Informatics and Artificial Intelligence

Added value of an artificial intelligence algorithm in reducing the number of missed incidental acute pulmonary embolism in routine portal venous phase chest CT

verfasst von: Eline Langius-Wiffen, Pim A. de Jong, Firdaus A. Mohamed Hoesein, Lisette Dekker, Andor F. van den Hoven, Ingrid M. Nijholt, Martijn F. Boomsma, Wouter B. Veldhuis

Erschienen in: European Radiology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The purpose of this study was to evaluate the incremental value of artificial intelligence (AI) compared to the diagnostic accuracy of radiologists alone in detecting incidental acute pulmonary embolism (PE) on routine portal venous contrast-enhanced chest computed tomography (CT).

Methods

CTs of 3089 consecutive patients referred to the radiology department for a routine contrast-enhanced chest CT between 27–5-2020 and 31–12-2020, were retrospectively analysed by a CE-certified and FDA-approved AI algorithm. The diagnostic performance of the AI was compared to the initial report. To determine the reference standard, discordant findings were independently evaluated by two readers. In case of disagreement, another experienced cardiothoracic radiologist with knowledge of the initial report and the AI output adjudicated.

Results

The prevalence of acute incidental PE in the reference standard was 2.2% (67 of 3089 patients). In 25 cases, AI detected initially unreported PE. This included three cases concerning central/lobar PE. Sensitivity of the AI algorithm was significantly higher than the outcome of the initial report (respectively 95.5% vs. 62.7%, p < 0.001), whereas specificity was very high for both (respectively 99.6% vs 99.9%, p = 0.012). The AI algorithm only showed a slightly higher amount of false-positive findings (11 vs. 2), resulting in a significantly lower PPV (85.3% vs. 95.5%, p = 0.047).

Conclusion

The AI algorithm showed high diagnostic accuracy in diagnosing incidental PE, detecting an additional 25 cases of initially unreported PE, accounting for 37.3% of all positive cases.

Clinical relevance statement

Radiologist support from AI algorithms in daily practice can prevent missed incidental acute PE on routine chest CT, without a high burden of false-positive cases.

Key Points

• Incidental pulmonary embolism is often missed by radiologists in non-diagnostic scans with suboptimal contrast opacification within the pulmonary trunk.
• An artificial intelligence algorithm showed higher sensitivity detecting incidental pulmonary embolism on routine portal venous chest CT compared to the initial report.
• Implementation of artificial intelligence support in routine daily practice will reduce the number of missed incidental pulmonary embolism.
Literatur
1.
Zurück zum Zitat Deniz MA, Deniz ZT, Adin ME et al (2017) Detection of incidental pulmonary embolism with multi-slice computed tomography in cancer patients. Clin Imaging 41:106–111 (S0899-7071(16)30160-7)CrossRefPubMed Deniz MA, Deniz ZT, Adin ME et al (2017) Detection of incidental pulmonary embolism with multi-slice computed tomography in cancer patients. Clin Imaging 41:106–111 (S0899-7071(16)30160-7)CrossRefPubMed
6.
Zurück zum Zitat Bach AG, Beckel C, Schurig N et al (2015) Imaging characteristics and embolus burden of unreported pulmonary embolism in oncologic patients. Clin Imaging 39:237–242 (S0899-7071(14)00246-0)CrossRefPubMed Bach AG, Beckel C, Schurig N et al (2015) Imaging characteristics and embolus burden of unreported pulmonary embolism in oncologic patients. Clin Imaging 39:237–242 (S0899-7071(14)00246-0)CrossRefPubMed
9.
Zurück zum Zitat Batra K, Xi Y, Al-Hreish K et al (2022) Detection of incidental pulmonary embolism on conventional contrast-enhanced chest CT: comparison of an artificial intelligence algorithm and clinical reports. Am J Roentgenol:1–8. https://doi.org/10.2214/AJR.22.27895 Batra K, Xi Y, Al-Hreish K et al (2022) Detection of incidental pulmonary embolism on conventional contrast-enhanced chest CT: comparison of an artificial intelligence algorithm and clinical reports. Am J Roentgenol:1–8. https://​doi.​org/​10.​2214/​AJR.​22.​27895
18.
Zurück zum Zitat Schmuelling L, Franzeck FC, Nickel CH et al (2021) Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: no significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. Eur J Radiol 141:109816. https://doi.org/10.1016/j.ejrad.2021.109816CrossRefPubMed Schmuelling L, Franzeck FC, Nickel CH et al (2021) Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: no significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. Eur J Radiol 141:109816. https://​doi.​org/​10.​1016/​j.​ejrad.​2021.​109816CrossRefPubMed
Metadaten
Titel
Added value of an artificial intelligence algorithm in reducing the number of missed incidental acute pulmonary embolism in routine portal venous phase chest CT
verfasst von
Eline Langius-Wiffen
Pim A. de Jong
Firdaus A. Mohamed Hoesein
Lisette Dekker
Andor F. van den Hoven
Ingrid M. Nijholt
Martijn F. Boomsma
Wouter B. Veldhuis
Publikationsdatum
03.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2024
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-10029-z

Neu im Fachgebiet Radiologie

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.