Erschienen in:
26.05.2020 | Basic Science • Original Article
Adiponectin ameliorates lung injury induced by intermittent hypoxia through inhibition of ROS-associated pulmonary cell apoptosis
verfasst von:
Wenxiao Ding, Xilong Zhang, Qiang Zhang, Yanbin Dong, Wenjing Wang, Ning Ding
Erschienen in:
Sleep and Breathing
|
Ausgabe 1/2021
Einloggen, um Zugang zu erhalten
Abstract
Purpose
Obstructive sleep apnea hypopnea syndrome has been reported to be associated with pulmonary hypertension (PH). Adiponectin (Ad) has many protective roles in the human body, including its function as an anti-inflammatory and an anti-oxidant, as well as its role in preventing insulin resistance and atherosclerosis. This study aimed to investigate the molecular mechanism of chronic intermittent hypoxia (CIH)-induced pulmonary injury and the protective role of Ad in experimental rats.
Methods
Thirty male Sprague-Dawley rats were randomly divided into three groups with 10 rats in each group: normal control (NC) group, CIH group, and CIH + Ad group. Rats in the NC group were kept breathing room air for 12 weeks. Rats in the CIH group were intermittently exposed to a hypoxic environment for 8 h/day for 12 weeks. Rats in the CIH + Ad group received 10 μg Ad twice weekly via intravenous injection. After 12 weeks of CIH exposure, we detected the pulmonary function, pulmonary artery pressure, lung histology, pulmonary cell apoptosis, pulmonary artery endothelial cell apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level. We also analyzed expression proteins involved in the mitochondria-, endoplasmic reticulum (ER) stress-, and Fas receptor-associated pulmonary apoptosis pathways, as well as the SIRT3/SOD2 pathway.
Results
CIH exposure for 12 weeks did not lead to abnormal pulmonary function, PH, or pulmonary artery endothelial cell apoptosis. However, we observed a significant increase in the rate of pulmonary cell apoptosis, the expression of proteins involved in mitochondria-, ER stress-, and Fas receptor-associated pulmonary apoptosis pathways, and the generation of ROS in the CIH group compared with the NC group. In contrast, the MMP and protein expressions of SIRT3/SOD2 pathway were significantly decreased in the CIH group compared with the NC group. Ad supplementation in the CIH + Ad group partially improved these changes induced by CIH.
Conclusion
Even though CIH did not cause abnormal pulmonary function or PH, early lung injury was detected at the molecular level in rats exposed to CIH. Treatment with Ad ameliorated the pulmonary injury by activating the SIRT3/SOD2 pathway, reducing ROS generation, and inhibiting ROS-associated lung cell apoptosis.