Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 3/2019

28.10.2019

Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease

verfasst von: Syeda Momna Ishtiaq, Haroon Rashid, Zulfia Hussain, Muhammad Imran Arshad, Junaid Ali Khan

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Adiponectin, a soluble adipocytokine, plays an important role in the functioning of adipose tissue and in the regulation of inflammation, particularly hepatic inflammation. The adiponectin subsequently imparts a crucial role in metabolic and hepato-inflammatory diseases. The most recent evidences indicate that lipotoxicity-induced inflammation in the liver is associated with obesity-derived alterations and remolding in adipose tissue that culminates in most prevalent liver pathology named as non-alcoholic fatty liver disease (NAFLD). A comprehensive crosstalk of adiponectin and its cognate receptors, specifically adiponectin receptor-2 in the liver mediates ameliorative effects in obesity-induced NAFLD by interaction with hepatic peroxisome proliferator-activated receptors (PPARs). Recent studies highlight the implication of molecular mediators mainly involved in the pathogenesis of obesity and obesity-driven NAFLD, however, the plausible mechanisms remain elusive. The present review aimed at collating the data regarding mechanistic approaches of adiponectin and adiponectin-activated PPARs as well as PPAR-induced adiponectin levels in attenuation of hepatic lipoinflammation. Understanding the rapidly occurring adiponectin-mediated pathophysiological outcomes might be of importance in the development of new therapies that can potentially resolve obesity and obesity-associated NAFLD.
Literatur
1.
Zurück zum Zitat Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8.PubMed Ishtiaq SM, Khan JA, Arshad MI. Psychosocial-stress, liver regeneration and weight gain: a conspicuous pathophysiological triad. Cell Physiol Biochem. 2018;46(1):1–8.PubMed
2.
Zurück zum Zitat Hussain Z, Khan JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10(10):940–4.PubMed Hussain Z, Khan JA. Food intake regulation by leptin: mechanisms mediating gluconeogenesis and energy expenditure. Asian Pac J Trop Med. 2017;10(10):940–4.PubMed
3.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentral Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.PubMedPubMedCentral
4.
Zurück zum Zitat Cowerd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, et al. Adiponectin lowers glucose production by increasing SOGA. Am J Pathol. 2010;177(4):1936–45.PubMedPubMedCentral Cowerd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, et al. Adiponectin lowers glucose production by increasing SOGA. Am J Pathol. 2010;177(4):1936–45.PubMedPubMedCentral
5.
Zurück zum Zitat Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, et al. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep. 2018;8(1):9858.PubMedPubMedCentral Decara J, Serrano A, Pavón FJ, Rivera P, Arco R, Gavito A, et al. The adiponectin promoter activator NP-1 induces high levels of circulating TNFα and weight loss in obese (fa/fa) Zucker rats. Sci Rep. 2018;8(1):9858.PubMedPubMedCentral
6.
Zurück zum Zitat Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedPubMedCentral Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112(1):91–100.PubMedPubMedCentral
7.
Zurück zum Zitat Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009;17(5):941–64.PubMed Puhl RM, Heuer CA. The stigma of obesity: a review and update. Obesity. 2009;17(5):941–64.PubMed
9.
Zurück zum Zitat Ghowsi M, Khazali H, Sisakhtnezhad S. Evaluation of TNF-α and IL-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci. 2018;21(2):165–74.PubMedPubMedCentral Ghowsi M, Khazali H, Sisakhtnezhad S. Evaluation of TNF-α and IL-6 mRNAs expressions in visceral and subcutaneous adipose tissues of polycystic ovarian rats and effects of resveratrol. Iran J Basic Med Sci. 2018;21(2):165–74.PubMedPubMedCentral
10.
11.
12.
Zurück zum Zitat Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.PubMed Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–63.PubMed
13.
Zurück zum Zitat Vajro P, Paolella G, Fasano A. Microbiota and gut–liver Axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8.PubMedPubMedCentral Vajro P, Paolella G, Fasano A. Microbiota and gut–liver Axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2013;56(5):461–8.PubMedPubMedCentral
14.
15.
Zurück zum Zitat Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepat Mon. 2015;15(1):e23941.PubMed Safi SZ, Shah H, Siok Yan GO, Qvist R. Insulin resistance provides the connection between hepatitis C virus and diabetes. Hepat Mon. 2015;15(1):e23941.PubMed
16.
Zurück zum Zitat Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and Immunohistochemical effects of metformin HCl-loaded beads formulations in Streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats. Pak Vet J. 2018;38(2):127–32. Mokhtare B, Cetin M, Saglam YS. Evaluation of histopathological and Immunohistochemical effects of metformin HCl-loaded beads formulations in Streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats. Pak Vet J. 2018;38(2):127–32.
17.
Zurück zum Zitat Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: current perspectives. Clin Res Hepatol Gastroenterol. 2017;41(1):17–24.PubMed Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: current perspectives. Clin Res Hepatol Gastroenterol. 2017;41(1):17–24.PubMed
18.
Zurück zum Zitat Mehmood K, Zhang H, Iqbal MK, Rehman MU. Li kun, Huang S, Shahzad M, Nabi F, Iqbal M, Li J. Tetramethylpyrazine mitigates toxicity and liver oxidative stress in Tibial dyschondroplasia chickens. Pak Vet J. 2018;38(1):76–80. Mehmood K, Zhang H, Iqbal MK, Rehman MU. Li kun, Huang S, Shahzad M, Nabi F, Iqbal M, Li J. Tetramethylpyrazine mitigates toxicity and liver oxidative stress in Tibial dyschondroplasia chickens. Pak Vet J. 2018;38(1):76–80.
19.
Zurück zum Zitat Noureen S, Riaz A, Saif A, Arshad M, Qamar MF, Arshad N. Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: a comparison. Pak Vet J. 2018;38(3):306–10. Noureen S, Riaz A, Saif A, Arshad M, Qamar MF, Arshad N. Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: a comparison. Pak Vet J. 2018;38(3):306–10.
20.
Zurück zum Zitat Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38(3):311–5. Hafez MH, Gad SB. Zinc oxide nanoparticles effect on oxidative status, brain activity, anxiety-like behavior and memory in adult and aged male rats. Pak Vet J. 2018;38(3):311–5.
21.
Zurück zum Zitat Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed Pharmacother. 2018;106:285–91.PubMed Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomed Pharmacother. 2018;106:285–91.PubMed
22.
Zurück zum Zitat Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on Spermatozoas. Int J Endocrinol. 2018;2018:1–11. Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on Spermatozoas. Int J Endocrinol. 2018;2018:1–11.
23.
Zurück zum Zitat Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.PubMed Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPAR ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.PubMed
24.
Zurück zum Zitat Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol. 2018;63:9–13.PubMed Zhang L, Gao J, Tang P, Chong L, Liu Y, Liu P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-γ. Int Immunopharmacol. 2018;63:9–13.PubMed
25.
Zurück zum Zitat Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol. 2013;380:55–64.PubMedPubMedCentral Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol. 2013;380:55–64.PubMedPubMedCentral
26.
Zurück zum Zitat Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet? Annu Rev Pharmacol Toxicol. 2016;56(1):605–26.PubMedPubMedCentral Rudraiah S, Zhang X, Wang L. Nuclear receptors as therapeutic targets in liver disease: are we there yet? Annu Rev Pharmacol Toxicol. 2016;56(1):605–26.PubMedPubMedCentral
27.
Zurück zum Zitat Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentral Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther. 2017;179:142–57.PubMedPubMedCentral
28.
Zurück zum Zitat Trauner M, Halilbasic E. Nuclear receptors as new perspective for the Management of Liver Diseases. Gastroenterology. 2011;140(4):1120–5.PubMed Trauner M, Halilbasic E. Nuclear receptors as new perspective for the Management of Liver Diseases. Gastroenterology. 2011;140(4):1120–5.PubMed
29.
Zurück zum Zitat Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011;53(3):1023–34.PubMed Wagner M, Zollner G, Trauner M. Nuclear receptors in liver disease. Hepatology. 2011;53(3):1023–34.PubMed
30.
Zurück zum Zitat Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by acetaminophen in mice: the importance of oxidative stress suppression. Adv Pharm Bull. 2018;8(2):331–9.PubMedPubMedCentral Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by acetaminophen in mice: the importance of oxidative stress suppression. Adv Pharm Bull. 2018;8(2):331–9.PubMedPubMedCentral
31.
Zurück zum Zitat Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR-γ agonist alleviates liver and spleen pathology via inducing Treg cells during Schistosoma japonicum infection. J Immunol Res. 2018;2018:6398078.PubMedPubMedCentral Zhu Y, Ni Y, Liu R, Hou M, Yang B, Song J, et al. PPAR-γ agonist alleviates liver and spleen pathology via inducing Treg cells during Schistosoma japonicum infection. J Immunol Res. 2018;2018:6398078.PubMedPubMedCentral
32.
Zurück zum Zitat Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One. 2013;8(4):e62253.PubMedPubMedCentral Hulsmans M, Geeraert B, Arnould T, Tsatsanis C, Holvoet P. PPAR agonist-induced reduction of Mcp1 in atherosclerotic plaques of obese, insulin-resistant mice depends on adiponectin-induced Irak3 expression. PLoS One. 2013;8(4):e62253.PubMedPubMedCentral
33.
Zurück zum Zitat Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 2018;474:227–37.PubMed Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA, Souza-Mello V. GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 2018;474:227–37.PubMed
34.
Zurück zum Zitat Zhu P, Huang W, Li J, Ma X, Hu M, Wang Y, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92(2):1525–36.PubMed Zhu P, Huang W, Li J, Ma X, Hu M, Wang Y, et al. Design, synthesis chalcone derivatives as AdipoR agonist for type 2 diabetes. Chem Biol Drug Des. 2018;92(2):1525–36.PubMed
35.
Zurück zum Zitat Reda E, Hassaneen S, El-Abhar HS. Novel trajectories of bromocriptine antidiabetic action: leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol. 2018;9:771.PubMedPubMedCentral Reda E, Hassaneen S, El-Abhar HS. Novel trajectories of bromocriptine antidiabetic action: leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol. 2018;9:771.PubMedPubMedCentral
36.
Zurück zum Zitat Parvin R, Noro E, Saito-Hakoda A, Shimada H, Suzuki S, Shimizu K, et al. Inhibitory effects of a novel PPAR-γ agonist MEKT1 on Pomc expression/ACTH secretion in AtT20 cells. PPAR Res. 2018;5346272. Parvin R, Noro E, Saito-Hakoda A, Shimada H, Suzuki S, Shimizu K, et al. Inhibitory effects of a novel PPAR-γ agonist MEKT1 on Pomc expression/ACTH secretion in AtT20 cells. PPAR Res. 2018;5346272.
37.
Zurück zum Zitat Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75.PubMedPubMedCentral Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, et al. Indomethacin enhances Brown fat activity. J Pharmacol Exp Ther. 2018;365(3):467–75.PubMedPubMedCentral
38.
Zurück zum Zitat Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, et al. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61(10):2235–46.PubMedCentral Khan MA, Kolb L, Skibba M, Hartmann M, Blöcher R, Proschak E, et al. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61(10):2235–46.PubMedCentral
39.
Zurück zum Zitat Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2018;498(4):1037–44.PubMed Bi J, Sun K, Wu H, Chen X, Tang H, Mao J. PPARγ alleviated hepatocyte steatosis through reducing SOCS3 by inhibiting JAK2/STAT3 pathway. Biochem Biophys Res Commun. 2018;498(4):1037–44.PubMed
40.
Zurück zum Zitat Raso GM, Simeoli R, Russo R, Iacono A, Santoro A, Paciello O, Ferrante MC, Canani RB, Calignano A, Meli R. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. Alisi A, editor. PLoS ONE. 2013;8(7):e68626. Raso GM, Simeoli R, Russo R, Iacono A, Santoro A, Paciello O, Ferrante MC, Canani RB, Calignano A, Meli R. Effects of Sodium Butyrate and Its Synthetic Amide Derivative on Liver Inflammation and Glucose Tolerance in an Animal Model of Steatosis Induced by High Fat Diet. Alisi A, editor. PLoS ONE. 2013;8(7):e68626.
42.
Zurück zum Zitat Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.PubMed Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine. 2018;112:116–31.PubMed
43.
Zurück zum Zitat Sayeed M, Gautam S, Verma DP, Afshan T, Kumari T, Srivastava AK, et al. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–23.PubMedPubMedCentral Sayeed M, Gautam S, Verma DP, Afshan T, Kumari T, Srivastava AK, et al. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–23.PubMedPubMedCentral
44.
Zurück zum Zitat Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMed Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–51.PubMed
45.
Zurück zum Zitat Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.PubMed Ghadge AA, Khaire AA, Kuvalekar AA. Adiponectin: a potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018;39:151–8.PubMed
46.
Zurück zum Zitat Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145–50.PubMed Garaulet M, Hernández-Morante JJ, de Heredia FP, Tébar FJ. Adiponectin, the controversial hormone. Public Health Nutr. 2007;10(10A):1145–50.PubMed
47.
Zurück zum Zitat Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015;27(3):532–44.PubMed Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, et al. Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal. 2015;27(3):532–44.PubMed
48.
Zurück zum Zitat Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver diseases. Diabetes Metab. 2014;40(2):95–107.PubMed Silva TE, Colombo G, Schiavon LL. Adiponectin: a multitasking player in the field of liver diseases. Diabetes Metab. 2014;40(2):95–107.PubMed
49.
Zurück zum Zitat Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13(8):e0201499.PubMedPubMedCentral Kaneda H, Nakajima T, Haruyama A, Shibasaki I, Hasegawa T, Sawaguchi T, et al. Association of serum concentrations of irisin and the adipokines adiponectin and leptin with epicardial fat in cardiovascular surgery patients. PLoS One. 2018;13(8):e0201499.PubMedPubMedCentral
50.
Zurück zum Zitat Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, De la Peña S, Arroyo Helguera OE. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018;35(4):841–6.PubMed Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, De la Peña S, Arroyo Helguera OE. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018;35(4):841–6.PubMed
51.
Zurück zum Zitat Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.PubMed Gomaa AA, Farghaly HSM, El-Sers DA, Farrag MM, Al-Zokeim NI. Inhibition of adiposity and related metabolic disturbances by polyphenol-rich extract of Boswellia serrata gum through alteration of adipo/cytokine profiles. Inflammopharmacology. 2019;27(3):549–59.PubMed
52.
Zurück zum Zitat Sacerdoti D, Singh SP, Schragenheim J, Bellner L, Vanella L, Raffaele M, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;3484107. https://doi.org/10.1155/2018/3484107. Sacerdoti D, Singh SP, Schragenheim J, Bellner L, Vanella L, Raffaele M, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;3484107. https://​doi.​org/​10.​1155/​2018/​3484107.
53.
Zurück zum Zitat Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández DI, Rodríguez E, Morán L, Hernández-Cosido L, Torres JL, Seoane LM, , Cubero FJ, Marcos M, Sabio G. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 2019; 216(5): 1108–1119.PubMedPubMedCentral Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández DI, Rodríguez E, Morán L, Hernández-Cosido L, Torres JL, Seoane LM, , Cubero FJ, Marcos M, Sabio G. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med 2019; 216(5): 1108–1119.PubMedPubMedCentral
54.
Zurück zum Zitat Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and Neointimal formation. J Biol Chem. 2002;277(29):25863–6.PubMed Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and Neointimal formation. J Biol Chem. 2002;277(29):25863–6.PubMed
55.
Zurück zum Zitat Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected Ob/Ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8.PubMed Yamauchi T, Kamon J, Waki H, Imai Y, Shimozawa N, Hioki K, et al. Globular adiponectin protected Ob/Ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461–8.PubMed
56.
Zurück zum Zitat Wei G, Yi S, Yong D, Shaozhuang L, Guangyong Z, Sanyuan H. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis. 2018;14(7):960–71.PubMed Wei G, Yi S, Yong D, Shaozhuang L, Guangyong Z, Sanyuan H. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1. Surg Obes Relat Dis. 2018;14(7):960–71.PubMed
57.
Zurück zum Zitat Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(3):700–8. Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, et al. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2018;1864(3):700–8.
58.
Zurück zum Zitat Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50(3):957–69.PubMed Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50(3):957–69.PubMed
59.
Zurück zum Zitat Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep. 2016;6:34151.PubMedPubMedCentral Ding W, Zhang Q, Dong Y, Ding N, Huang H, Zhu X, et al. Adiponectin protects the rats liver against chronic intermittent hypoxia induced injury through AMP-activated protein kinase pathway. Sci Rep. 2016;6:34151.PubMedPubMedCentral
60.
Zurück zum Zitat Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentral Jung U, Choi M-S. Obesity and its metabolic complications: the role of Adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.PubMedPubMedCentral
61.
Zurück zum Zitat Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.PubMedPubMedCentral Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23(5):770–84.PubMedPubMedCentral
62.
Zurück zum Zitat Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267–75.PubMedPubMedCentral Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab. 2017;6(3):267–75.PubMedPubMedCentral
63.
Zurück zum Zitat Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci. 2018;115(26):E5896–905.PubMedPubMedCentral Dai J, Liang K, Zhao S, Jia W, Liu Y, Wu H, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci. 2018;115(26):E5896–905.PubMedPubMedCentral
64.
65.
Zurück zum Zitat Khan HA, Ahmad MZ, Khan JA, Arshad MI. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Int. 2017;16(3):245–56. Khan HA, Ahmad MZ, Khan JA, Arshad MI. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Int. 2017;16(3):245–56.
66.
Zurück zum Zitat Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.PubMed Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.PubMed
67.
Zurück zum Zitat Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.PubMed Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.PubMed
68.
Zurück zum Zitat Chen J, Montagner A, Tan N, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19(7).pii: E1893. Chen J, Montagner A, Tan N, Wahli W. Insights into the Role of PPARβ/δ in NAFLD. Int J Mol Sci. 2018;19(7).pii: E1893.
69.
Zurück zum Zitat Yu Z, Guo F, Zhang Z, Luo X, Tian J, Li H. Protective effects of glycyrrhizin on LPS and amoxicillin/potassium Clavulanate-induced liver injury in chicken. Pak Vet J. 2017;37(1):13–8. Yu Z, Guo F, Zhang Z, Luo X, Tian J, Li H. Protective effects of glycyrrhizin on LPS and amoxicillin/potassium Clavulanate-induced liver injury in chicken. Pak Vet J. 2017;37(1):13–8.
70.
Zurück zum Zitat de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12.PubMed de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol. 2008;48:S104–12.PubMed
72.
Zurück zum Zitat Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;95974. Stienstra R, Duval C, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res. 2007;95974.
73.
Zurück zum Zitat Mandrika I, Tilgase A, Petrovska R, Klovins J. Hydroxycarboxylic acid receptor ligands modulate Proinflammatory cytokine expression in human macrophages and adipocytes without affecting adipose differentiation. Biol Pharm Bull. 2018;41(10):1574–80.PubMed Mandrika I, Tilgase A, Petrovska R, Klovins J. Hydroxycarboxylic acid receptor ligands modulate Proinflammatory cytokine expression in human macrophages and adipocytes without affecting adipose differentiation. Biol Pharm Bull. 2018;41(10):1574–80.PubMed
74.
Zurück zum Zitat Salvadó L, Barroso E, Gómez-Foix AM, Palomer X, Michalik L, Wahli W, et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia. 2014;57(10):2126–35.PubMed Salvadó L, Barroso E, Gómez-Foix AM, Palomer X, Michalik L, Wahli W, et al. PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia. 2014;57(10):2126–35.PubMed
75.
Zurück zum Zitat Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.PubMed Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.PubMed
76.
Zurück zum Zitat Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.PubMed Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.PubMed
77.
Zurück zum Zitat Magadum A, Engel F. PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci. 2018;19(7). pii: E2013.PubMedCentral Magadum A, Engel F. PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci. 2018;19(7). pii: E2013.PubMedCentral
78.
Zurück zum Zitat Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res. 2018;6970407. Zhang Q, Xiang S, Liu Q, Gu T, Yao Y, Lu X. PPARγ antagonizes hypoxia-induced activation of hepatic stellate cell through cross mediating PI3K/AKT and cGMP/PKG signaling. PPAR Res. 2018;6970407.
79.
Zurück zum Zitat Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.PubMedPubMedCentral Chen W, Xi X, Zhang S, Zou C, Kuang R, Ye Z, et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front Pharmacol. 2018;9:851.PubMedPubMedCentral
80.
Zurück zum Zitat Chen J, Liu H, Zhang X. Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(7):732–7.PubMed Chen J, Liu H, Zhang X. Protective effects of rosiglitazone on hepatic ischemia reperfusion injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(7):732–7.PubMed
81.
Zurück zum Zitat Kim MJ, Park CH, Kim DH, Park MH, Park KC, Hyun MK, et al. Hepatoprotective effects of MHY3200 on high-fat, diet-induced, non-alcoholic fatty liver disease in rats. Mol Basel Switz. 2018;23(8):2057. Kim MJ, Park CH, Kim DH, Park MH, Park KC, Hyun MK, et al. Hepatoprotective effects of MHY3200 on high-fat, diet-induced, non-alcoholic fatty liver disease in rats. Mol Basel Switz. 2018;23(8):2057.
82.
Zurück zum Zitat Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High fat diet upregulates fatty acid oxidation and Ketogenesis via intervention of PPAR-γ. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;48(3):1317–31. Sikder K, Shukla SK, Patel N, Singh H, Rafiq K. High fat diet upregulates fatty acid oxidation and Ketogenesis via intervention of PPAR-γ. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;48(3):1317–31.
83.
Zurück zum Zitat Santin JR, Machado ID, Drewes CC, Kupa LD, Soares RM, Cavalcanti DM, et al. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother. 2018;105:947–55.PubMed Santin JR, Machado ID, Drewes CC, Kupa LD, Soares RM, Cavalcanti DM, et al. Role of an indole-thiazolidiene PPAR pan ligand on actions elicited by G-protein coupled receptor activated neutrophils. Biomed Pharmacother. 2018;105:947–55.PubMed
Metadaten
Titel
Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease
verfasst von
Syeda Momna Ishtiaq
Haroon Rashid
Zulfia Hussain
Muhammad Imran Arshad
Junaid Ali Khan
Publikationsdatum
28.10.2019
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 3/2019
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-019-09510-2

Weitere Artikel der Ausgabe 3/2019

Reviews in Endocrine and Metabolic Disorders 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.