Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2016

21.11.2016

Advances in decoding breast cancer brain metastasis

verfasst von: Chenyu Zhang, Dihua Yu

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The past decade has witnessed impressive advances in cancer treatment ushered in by targeted and immunotherapies. However, with significantly prolonged survival, upon recurrence, more patients become inflicted by brain metastasis, which is mostly refractory to all currently available therapeutic regimens. Historically, brain metastasis is an understudied area in cancer research, partly due to the dearth of appropriate experimental models that closely simulate the special biological features of metastasis in the unique brain environment and to the sophistication of techniques required to perform in-depth studies of the extremely complex and challenging brain metastasis. Yet, with increasing clinical demand for more effective treatment options, brain metastasis research has rapidly advanced in recent years. The present review spotlights the recent major progresses in basic and translational studies of brain metastasis with focuses on new animal models, novel imaging technologies, omics “big data” resources, and some new and exciting biological insights on brain metastasis.
Literatur
1.
Zurück zum Zitat Gavrilovic, I. T., & Posner, J. B. (2005). Brain metastases: epidemiology and pathophysiology. Journal of Neuro-Oncology, 75(1), 5–14.PubMedCrossRef Gavrilovic, I. T., & Posner, J. B. (2005). Brain metastases: epidemiology and pathophysiology. Journal of Neuro-Oncology, 75(1), 5–14.PubMedCrossRef
2.
Zurück zum Zitat Patchell, R. A. (2003). The management of brain metastases. Cancer Treatment Reviews, 29(6), 533–540.PubMedCrossRef Patchell, R. A. (2003). The management of brain metastases. Cancer Treatment Reviews, 29(6), 533–540.PubMedCrossRef
3.
Zurück zum Zitat Barnholtz-Sloan, J. S., Sloan, A. E., Davis, F. G., Vigneau, F. D., Lai, P., & Sawaya, R. E. (2004). Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology, 22(14), 2865–2872.PubMedCrossRef Barnholtz-Sloan, J. S., Sloan, A. E., Davis, F. G., Vigneau, F. D., Lai, P., & Sawaya, R. E. (2004). Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. Journal of Clinical Oncology, 22(14), 2865–2872.PubMedCrossRef
4.
Zurück zum Zitat Schouten, L. J., Rutten, J., Huveneers, H. A., & Twijnstra, A. (2002). Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer, 94(10), 2698–2705.PubMedCrossRef Schouten, L. J., Rutten, J., Huveneers, H. A., & Twijnstra, A. (2002). Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer, 94(10), 2698–2705.PubMedCrossRef
5.
Zurück zum Zitat Perin, T., Canzonieri, V., Memeo, L., & Massarut, S. (2011). Breast metastasis of primary colon cancer with micrometastasis in the axillary sentinel node: a metastasis that metastasized? Diagnostic Pathology, 6, 45.PubMedPubMedCentralCrossRef Perin, T., Canzonieri, V., Memeo, L., & Massarut, S. (2011). Breast metastasis of primary colon cancer with micrometastasis in the axillary sentinel node: a metastasis that metastasized? Diagnostic Pathology, 6, 45.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Janssen, S., Dahlke, M., Trang, N. T., Khoa, M. T., & Rades, D. (2015). Estimation of the six-month survival probability after radiosurgery for brain metastases from kidney cancer. Anticancer Research, 35(7), 4215–4217.PubMed Janssen, S., Dahlke, M., Trang, N. T., Khoa, M. T., & Rades, D. (2015). Estimation of the six-month survival probability after radiosurgery for brain metastases from kidney cancer. Anticancer Research, 35(7), 4215–4217.PubMed
7.
Zurück zum Zitat Chua, C., Raaj, J., Pan, S., Farid, M., Lee, J. F., Ho, Z. C., et al. (2016). Brain metastasis in sarcoma: does metastasectomy or aggressive multi-disciplinary treatment improve survival outcomes. Asia-Pacific Journal of Clinical Oncology, 12(1), e16–e22.PubMedCrossRef Chua, C., Raaj, J., Pan, S., Farid, M., Lee, J. F., Ho, Z. C., et al. (2016). Brain metastasis in sarcoma: does metastasectomy or aggressive multi-disciplinary treatment improve survival outcomes. Asia-Pacific Journal of Clinical Oncology, 12(1), e16–e22.PubMedCrossRef
8.
Zurück zum Zitat Lemke, J., Barth, T. F., Juchems, M., Kapapa, T., Henne-Bruns, D., & Kornmann, M. (2011). Long-term survival following resection of brain metastases from pancreatic cancer. Anticancer Research, 31(12), 4599–4603.PubMed Lemke, J., Barth, T. F., Juchems, M., Kapapa, T., Henne-Bruns, D., & Kornmann, M. (2011). Long-term survival following resection of brain metastases from pancreatic cancer. Anticancer Research, 31(12), 4599–4603.PubMed
9.
Zurück zum Zitat Bendell, J. C., Domchek, S. M., Burstein, H. J., Harris, L., Younger, J., Kuter, I., et al. (2003). Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer, 97(12), 2972–2977.PubMedCrossRef Bendell, J. C., Domchek, S. M., Burstein, H. J., Harris, L., Younger, J., Kuter, I., et al. (2003). Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer, 97(12), 2972–2977.PubMedCrossRef
10.
Zurück zum Zitat Clayton, A. J., Danson, S., Jolly, S., Ryder, W. D., Burt, P. A., Stewart, A. L., et al. (2004). Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. British Journal of Cancer, 91(4), 639–643.PubMedPubMedCentral Clayton, A. J., Danson, S., Jolly, S., Ryder, W. D., Burt, P. A., Stewart, A. L., et al. (2004). Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. British Journal of Cancer, 91(4), 639–643.PubMedPubMedCentral
11.
Zurück zum Zitat Kong, W., Jarvis, C., & Mackillop, W. J. (2015). Estimating the need for palliative radiotherapy for brain metastasis: a benchmarking approach. Clinical Oncology (Royal College of Radiologists), 27(2), 83–91.CrossRef Kong, W., Jarvis, C., & Mackillop, W. J. (2015). Estimating the need for palliative radiotherapy for brain metastasis: a benchmarking approach. Clinical Oncology (Royal College of Radiologists), 27(2), 83–91.CrossRef
12.
Zurück zum Zitat Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., & Goncalves, A. (2012). Recent trends in epidemiology of brain metastases: an overview. Anticancer Research, 32(11), 4655–4662.PubMed Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., & Goncalves, A. (2012). Recent trends in epidemiology of brain metastases: an overview. Anticancer Research, 32(11), 4655–4662.PubMed
13.
Zurück zum Zitat Smedby, K. E., Brandt, L., Backlund, M. L., & Blomqvist, P. (2009). Brain metastases admissions in Sweden between 1987 and 2006. British Journal of Cancer, 101(11), 1919–1924.PubMedPubMedCentralCrossRef Smedby, K. E., Brandt, L., Backlund, M. L., & Blomqvist, P. (2009). Brain metastases admissions in Sweden between 1987 and 2006. British Journal of Cancer, 101(11), 1919–1924.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Steeg, P. S., Camphausen, K. A., & Smith, Q. R. (2011). Brain metastases as preventive and therapeutic targets. Nature Reviews. Cancer, 11(5), 352–363.PubMedCrossRef Steeg, P. S., Camphausen, K. A., & Smith, Q. R. (2011). Brain metastases as preventive and therapeutic targets. Nature Reviews. Cancer, 11(5), 352–363.PubMedCrossRef
15.
Zurück zum Zitat Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews. Clinical Oncology, 8(6), 344–356.PubMedPubMedCentral Eichler, A. F., Chung, E., Kodack, D. P., Loeffler, J. S., Fukumura, D., & Jain, R. K. (2011). The biology of brain metastases—translation to new therapies. Nature Reviews. Clinical Oncology, 8(6), 344–356.PubMedPubMedCentral
16.
Zurück zum Zitat Zhang, C., & Yu, D. (2011). Microenvironment determinants of brain metastasis. Cell & Bioscience, 1(1), 8.CrossRef Zhang, C., & Yu, D. (2011). Microenvironment determinants of brain metastasis. Cell & Bioscience, 1(1), 8.CrossRef
17.
Zurück zum Zitat Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.PubMedCrossRef Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.PubMedCrossRef
18.
Zurück zum Zitat Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.PubMedCrossRef Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.PubMedCrossRef
19.
Zurück zum Zitat Daphu, I., Sundstrom, T., Horn, S., Huszthy, P. C., Niclou, S. P., Sakariassen, P. O., et al. (2013). In vivo animal models for studying brain metastasis: value and limitations. Clinical & Experimental Metastasis, 30(5), 695–710. Daphu, I., Sundstrom, T., Horn, S., Huszthy, P. C., Niclou, S. P., Sakariassen, P. O., et al. (2013). In vivo animal models for studying brain metastasis: value and limitations. Clinical & Experimental Metastasis, 30(5), 695–710.
20.
Zurück zum Zitat Wu, Y. J., Muldoon, L. L., Gahramanov, S., Kraemer, D. F., Marshall, D. J., & Neuwelt, E. A. (2012). Targeting alphaV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. Journal of Neuro-Oncology, 110(1), 27–36.PubMedPubMedCentralCrossRef Wu, Y. J., Muldoon, L. L., Gahramanov, S., Kraemer, D. F., Marshall, D. J., & Neuwelt, E. A. (2012). Targeting alphaV-integrins decreased metastasis and increased survival in a nude rat breast cancer brain metastasis model. Journal of Neuro-Oncology, 110(1), 27–36.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., et al. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271–3277.PubMedCrossRef Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., et al. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271–3277.PubMedCrossRef
22.
Zurück zum Zitat Debeb, B. G., Lacerda, L., Anfossi, S., Diagaradjane, P., Chu, K., Bambhroliya, A., et al. (2016). miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst, 108(8). Debeb, B. G., Lacerda, L., Anfossi, S., Diagaradjane, P., Chu, K., Bambhroliya, A., et al. (2016). miR-141-mediated regulation of brain metastasis from breast cancer. J Natl Cancer Inst, 108(8).
23.
Zurück zum Zitat Ni, J., Ramkissoon, S. H., Xie, S., Goel, S., Stover, D. G., Guo, H., et al. (2016). Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 22(7), 723–726.PubMedPubMedCentralCrossRef Ni, J., Ramkissoon, S. H., Xie, S., Goel, S., Stover, D. G., Guo, H., et al. (2016). Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 22(7), 723–726.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., et al. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. The Lancet Oncology, 17(7), 976–983.PubMedCrossRef Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., et al. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. The Lancet Oncology, 17(7), 976–983.PubMedCrossRef
25.
Zurück zum Zitat Zhang, Y., Zhang, N., Hoffman, R. M., & Zhao, M. (2015). Surgically-induced multi-organ metastasis in an orthotopic syngeneic imageable model of 4T1 murine breast cancer. Anticancer Research, 35(9), 4641–4646.PubMed Zhang, Y., Zhang, N., Hoffman, R. M., & Zhao, M. (2015). Surgically-induced multi-organ metastasis in an orthotopic syngeneic imageable model of 4T1 murine breast cancer. Anticancer Research, 35(9), 4641–4646.PubMed
26.
Zurück zum Zitat Erin, N., Kale, S., Tanriover, G., Koksoy, S., Duymus, O., & Korcum, A. F. (2013). Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Research and Treatment, 139(3), 677–689.PubMedCrossRef Erin, N., Kale, S., Tanriover, G., Koksoy, S., Duymus, O., & Korcum, A. F. (2013). Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Research and Treatment, 139(3), 677–689.PubMedCrossRef
27.
Zurück zum Zitat Barajas Jr., R. F., & Cha, S. (2012). Imaging diagnosis of brain metastasis. Progress in Neurological Surgery, 25, 55–73.PubMedCrossRef Barajas Jr., R. F., & Cha, S. (2012). Imaging diagnosis of brain metastasis. Progress in Neurological Surgery, 25, 55–73.PubMedCrossRef
28.
Zurück zum Zitat Waerzeggers, Y., Rahbar, K., Riemann, B., Weckesser, M., Schafers, M., Hesselmann, V., et al. (2010). PET in the diagnosis and management of patients with brain metastasis: current role and future perspectives. Cancer Biomarkers, 7(4), 219–233.PubMed Waerzeggers, Y., Rahbar, K., Riemann, B., Weckesser, M., Schafers, M., Hesselmann, V., et al. (2010). PET in the diagnosis and management of patients with brain metastasis: current role and future perspectives. Cancer Biomarkers, 7(4), 219–233.PubMed
29.
Zurück zum Zitat Kienast, Y., von Baumgarten, L., Fuhrmann, M., Klinkert, W. E., Goldbrunner, R., Herms, J., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.PubMedCrossRef Kienast, Y., von Baumgarten, L., Fuhrmann, M., Klinkert, W. E., Goldbrunner, R., Herms, J., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116–122.PubMedCrossRef
30.
Zurück zum Zitat Murrell, D. H., Zarghami, N., Jensen, M. D., Chambers, A. F., Wong, E., & Foster, P. J. (2016). Evaluating changes to blood-brain barrier integrity in brain metastasis over time and after radiation treatment. Translational Oncology, 9(3), 219–227.PubMedPubMedCentralCrossRef Murrell, D. H., Zarghami, N., Jensen, M. D., Chambers, A. F., Wong, E., & Foster, P. J. (2016). Evaluating changes to blood-brain barrier integrity in brain metastasis over time and after radiation treatment. Translational Oncology, 9(3), 219–227.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat O'Brien, E. R., Kersemans, V., Tredwell, M., Checa, B., Serres, S., Soto, M. S., et al. (2014). Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. Journal of Nuclear Medicine, 55(2), 275–280.PubMedCrossRef O'Brien, E. R., Kersemans, V., Tredwell, M., Checa, B., Serres, S., Soto, M. S., et al. (2014). Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. Journal of Nuclear Medicine, 55(2), 275–280.PubMedCrossRef
32.
Zurück zum Zitat Poli, G. L., Bianchi, C., Virotta, G., Bettini, A., Moretti, R., Trachsel, E., et al. (2013). Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunology Research, 1(2), 134–143.PubMedCrossRef Poli, G. L., Bianchi, C., Virotta, G., Bettini, A., Moretti, R., Trachsel, E., et al. (2013). Radretumab radioimmunotherapy in patients with brain metastasis: a 124I-L19SIP dosimetric PET study. Cancer Immunology Research, 1(2), 134–143.PubMedCrossRef
33.
Zurück zum Zitat Sarmiento, M. (2013). Use of confocal microscopy in the study of microglia in a brain metastasis model. Methods in Molecular Biology, 1041, 337–346.PubMedCrossRef Sarmiento, M. (2013). Use of confocal microscopy in the study of microglia in a brain metastasis model. Methods in Molecular Biology, 1041, 337–346.PubMedCrossRef
34.
Zurück zum Zitat Saha, D., Dunn, H., Zhou, H., Harada, H., Hiraoka, M., Mason, R. P., et al. (2011). In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. Journal of Visualized Experiments, 56. Saha, D., Dunn, H., Zhou, H., Harada, H., Hiraoka, M., Mason, R. P., et al. (2011). In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. Journal of Visualized Experiments, 56.
35.
Zurück zum Zitat Guldner, I. H., Yang, L., Cowdrick, K. R., Wang, Q., Alvarez Barrios, W. V., Zellmer, V. R., et al. (2016). An integrative platform for three-dimensional quantitative analysis of spatially heterogeneous metastasis landscapes. Scientific Reports, 6, 24201.PubMedPubMedCentralCrossRef Guldner, I. H., Yang, L., Cowdrick, K. R., Wang, Q., Alvarez Barrios, W. V., Zellmer, V. R., et al. (2016). An integrative platform for three-dimensional quantitative analysis of spatially heterogeneous metastasis landscapes. Scientific Reports, 6, 24201.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332–337.PubMedPubMedCentralCrossRef Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., et al. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332–337.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Lee, J. Y., Park, K., Lim, S. H., Kim, H. S., Yoo, K. H., Jung, K. S., et al. (2015). Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget, 6(41), 43731–43742.PubMedPubMedCentral Lee, J. Y., Park, K., Lim, S. H., Kim, H. S., Yoo, K. H., Jung, K. S., et al. (2015). Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer. Oncotarget, 6(41), 43731–43742.PubMedPubMedCentral
38.
Zurück zum Zitat Lee, H. W., Seol, H. J., Choi, Y. L., Ju, H. J., Joo, K. M., Ko, Y. H., et al. (2012). Genomic copy number alterations associated with the early brain metastasis of non-small cell lung cancer. International Journal of Oncology, 41(6), 2013–2020.PubMed Lee, H. W., Seol, H. J., Choi, Y. L., Ju, H. J., Joo, K. M., Ko, Y. H., et al. (2012). Genomic copy number alterations associated with the early brain metastasis of non-small cell lung cancer. International Journal of Oncology, 41(6), 2013–2020.PubMed
39.
Zurück zum Zitat Li, F., Sun, L., & Zhang, S. (2015). Acquirement of DNA copy number variations in non-small cell lung cancer metastasis to the brain. Oncology Reports, 34(4), 1701–1707.PubMedPubMedCentral Li, F., Sun, L., & Zhang, S. (2015). Acquirement of DNA copy number variations in non-small cell lung cancer metastasis to the brain. Oncology Reports, 34(4), 1701–1707.PubMedPubMedCentral
40.
Zurück zum Zitat Marzese, D. M., Witz, I. P., Kelly, D. F., & Hoon, D. S. (2015). Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics, 7(8), 1303–1311.PubMedCrossRef Marzese, D. M., Witz, I. P., Kelly, D. F., & Hoon, D. S. (2015). Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics, 7(8), 1303–1311.PubMedCrossRef
41.
Zurück zum Zitat Marzese, D. M., Scolyer, R. A., Huynh, J. L., Huang, S. K., Hirose, H., Chong, K. K., et al. (2014). Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Human Molecular Genetics, 23(1), 226–238.PubMedCrossRef Marzese, D. M., Scolyer, R. A., Huynh, J. L., Huang, S. K., Hirose, H., Chong, K. K., et al. (2014). Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Human Molecular Genetics, 23(1), 226–238.PubMedCrossRef
42.
Zurück zum Zitat Salhia, B., Kiefer, J., Ross, J. T., Metapally, R., Martinez, R. A., Johnson, K. N., et al. (2014). Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PloS One, 9(1), e85448.PubMedPubMedCentralCrossRef Salhia, B., Kiefer, J., Ross, J. T., Metapally, R., Martinez, R. A., Johnson, K. N., et al. (2014). Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PloS One, 9(1), e85448.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Park, E. S., Kim, S. J., Kim, S. W., Yoon, S. L., Leem, S. H., Kim, S. B., et al. (2011). Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17456–17461.PubMedPubMedCentralCrossRef Park, E. S., Kim, S. J., Kim, S. W., Yoon, S. L., Leem, S. H., Kim, S. B., et al. (2011). Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17456–17461.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Camacho, L., Guerrero, P., & Marchetti, D. (2013). MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PloS One, 8(9), e73790.PubMedPubMedCentralCrossRef Camacho, L., Guerrero, P., & Marchetti, D. (2013). MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PloS One, 8(9), e73790.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Yoshida, A., Okamoto, N., Tozawa-Ono, A., Koizumi, H., Kiguchi, K., Ishizuka, B., et al. (2013). Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Human Cell, 26(2), 56–66.PubMedPubMedCentralCrossRef Yoshida, A., Okamoto, N., Tozawa-Ono, A., Koizumi, H., Kiguchi, K., Ishizuka, B., et al. (2013). Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Human Cell, 26(2), 56–66.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Dun, M. D., Chalkley, R. J., Faulkner, S., Keene, S., Avery-Kiejda, K. A., Scott, R. J., et al. (2015). Proteotranscriptomic profiling of 231-BR breast cancer cells: identification of potential biomarkers and therapeutic targets for brain metastasis. Molecular & Cellular Proteomics, 14(9), 2316–2330.CrossRef Dun, M. D., Chalkley, R. J., Faulkner, S., Keene, S., Avery-Kiejda, K. A., Scott, R. J., et al. (2015). Proteotranscriptomic profiling of 231-BR breast cancer cells: identification of potential biomarkers and therapeutic targets for brain metastasis. Molecular & Cellular Proteomics, 14(9), 2316–2330.CrossRef
47.
Zurück zum Zitat Sjobakk, T. E., Vettukattil, R., Gulati, M., Gulati, S., Lundgren, S., Gribbestad, I. S., et al. (2013). Metabolic profiles of brain metastases. International Journal of Molecular Sciences, 14(1), 2104–2118.PubMedPubMedCentralCrossRef Sjobakk, T. E., Vettukattil, R., Gulati, M., Gulati, S., Lundgren, S., Gribbestad, I. S., et al. (2013). Metabolic profiles of brain metastases. International Journal of Molecular Sciences, 14(1), 2104–2118.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Neagu, M. R., Gill, C. M., Batchelor, T. T., & Brastianos, P. K. (2015). Genomic profiling of brain metastases: current knowledge and new frontiers. Chinese Clinical Oncology, 4(2), 22.PubMed Neagu, M. R., Gill, C. M., Batchelor, T. T., & Brastianos, P. K. (2015). Genomic profiling of brain metastases: current knowledge and new frontiers. Chinese Clinical Oncology, 4(2), 22.PubMed
49.
Zurück zum Zitat Saunus, J. M., Quinn, M. C., Patch, A. M., Pearson, J. V., Bailey, P. J., Nones, K., et al. (2015). Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. The Journal of Pathology, 237(3), 363–378.PubMedCrossRef Saunus, J. M., Quinn, M. C., Patch, A. M., Pearson, J. V., Bailey, P. J., Nones, K., et al. (2015). Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. The Journal of Pathology, 237(3), 363–378.PubMedCrossRef
50.
Zurück zum Zitat Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.PubMedPubMedCentralCrossRef Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., et al. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentralCrossRef Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., et al. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Paik, P. K., Shen, R., Won, H., Rekhtman, N., Wang, L., Sima, C. S., et al. (2015). Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discovery, 5(6), 610–621.PubMedPubMedCentralCrossRef Paik, P. K., Shen, R., Won, H., Rekhtman, N., Wang, L., Sima, C. S., et al. (2015). Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discovery, 5(6), 610–621.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Brastianos, P. K., Carter, S. L., Santagata, S., Cahill, D. P., Taylor-Weiner, A., Jones, R. T., et al. (2015). Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discovery, 5(11), 1164–1177.PubMedPubMedCentralCrossRef Brastianos, P. K., Carter, S. L., Santagata, S., Cahill, D. P., Taylor-Weiner, A., Jones, R. T., et al. (2015). Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discovery, 5(11), 1164–1177.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Li, F., Glinskii, O. V., Zhou, J., Wilson, L. S., Barnes, S., Anthony, D. C., et al. (2011). Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain. PloS One, 6(7), e21977.PubMedPubMedCentralCrossRef Li, F., Glinskii, O. V., Zhou, J., Wilson, L. S., Barnes, S., Anthony, D. C., et al. (2011). Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain. PloS One, 6(7), e21977.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Xing, F., Sharma, S., Liu, Y., Mo, Y. Y., Wu, K., Zhang, Y. Y., et al. (2015). miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene, 34(37), 4890–4900.PubMedPubMedCentralCrossRef Xing, F., Sharma, S., Liu, Y., Mo, Y. Y., Wu, K., Zhang, Y. Y., et al. (2015). miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene, 34(37), 4890–4900.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ahmad, A., Sethi, S., Chen, W., Ali-Fehmi, R., Mittal, S., & Sarkar, F. H. (2014). Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. American Journal of Translational Research, 6(4), 384–390.PubMedPubMedCentral Ahmad, A., Sethi, S., Chen, W., Ali-Fehmi, R., Mittal, S., & Sarkar, F. H. (2014). Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. American Journal of Translational Research, 6(4), 384–390.PubMedPubMedCentral
57.
Zurück zum Zitat Okuda, H., Xing, F., Pandey, P. R., Sharma, S., Watabe, M., Pai, S. K., et al. (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Research, 73(4), 1434–1444.PubMedPubMedCentralCrossRef Okuda, H., Xing, F., Pandey, P. R., Sharma, S., Watabe, M., Pai, S. K., et al. (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Research, 73(4), 1434–1444.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Hwang, S. J., Seol, H. J., Park, Y. M., Kim, K. H., Gorospe, M., Nam, D. H., et al. (2012). MicroRNA-146a suppresses metastatic activity in brain metastasis. Molecules and Cells, 34(3), 329–334.PubMedPubMedCentralCrossRef Hwang, S. J., Seol, H. J., Park, Y. M., Kim, K. H., Gorospe, M., Nam, D. H., et al. (2012). MicroRNA-146a suppresses metastatic activity in brain metastasis. Molecules and Cells, 34(3), 329–334.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Zhang, L., Sullivan, P. S., Goodman, J. C., Gunaratne, P. H., & Marchetti, D. (2011). MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Research, 71(3), 645–654.PubMedPubMedCentralCrossRef Zhang, L., Sullivan, P. S., Goodman, J. C., Gunaratne, P. H., & Marchetti, D. (2011). MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Research, 71(3), 645–654.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Donzelli, S., Mori, F., Bellissimo, T., Sacconi, A., Casini, B., Frixa, T., et al. (2015). Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget, 6(34), 35183–35201.PubMedPubMedCentral Donzelli, S., Mori, F., Bellissimo, T., Sacconi, A., Casini, B., Frixa, T., et al. (2015). Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget, 6(34), 35183–35201.PubMedPubMedCentral
61.
Zurück zum Zitat Hwang, S. J., Lee, H. W., Kim, H. R., Song, H. J., Lee, D. H., Lee, H., et al. (2015). Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget, 6(24), 20434–20448.PubMedPubMedCentralCrossRef Hwang, S. J., Lee, H. W., Kim, H. R., Song, H. J., Lee, D. H., Lee, H., et al. (2015). Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1. Oncotarget, 6(24), 20434–20448.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Chen, L. T., Xu, S. D., Xu, H., Zhang, J. F., Ning, J. F., & Wang, S. F. (2012). MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Medical Oncology, 29(3), 1673–1680.PubMedCrossRef Chen, L. T., Xu, S. D., Xu, H., Zhang, J. F., Ning, J. F., & Wang, S. F. (2012). MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Medical Oncology, 29(3), 1673–1680.PubMedCrossRef
63.
Zurück zum Zitat Singh, M., Garg, N., Venugopal, C., Hallett, R., Tokar, T., McFarlane, N., et al. (2015). STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget, 6(29), 27461–27477.PubMedPubMedCentralCrossRef Singh, M., Garg, N., Venugopal, C., Hallett, R., Tokar, T., McFarlane, N., et al. (2015). STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget, 6(29), 27461–27477.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Hanniford, D., Zhong, J., Koetz, L., Gaziel-Sovran, A., Lackaye, D. J., Shang, S., et al. (2015). A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clinical Cancer Research, 21(21), 4903–4912.PubMedPubMedCentralCrossRef Hanniford, D., Zhong, J., Koetz, L., Gaziel-Sovran, A., Lackaye, D. J., Shang, S., et al. (2015). A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clinical Cancer Research, 21(21), 4903–4912.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Nasser, S., Ranade, A. R., Sridhar, S., Haney, L., Korn, R. L., Gotway, M. B., et al. (2011). Biomarkers associated with metastasis of lung cancer to brain predict patient survival. International Journal of Data Mining and Bioinformatics, 5(3), 287–307.PubMedCrossRef Nasser, S., Ranade, A. R., Sridhar, S., Haney, L., Korn, R. L., Gotway, M. B., et al. (2011). Biomarkers associated with metastasis of lung cancer to brain predict patient survival. International Journal of Data Mining and Bioinformatics, 5(3), 287–307.PubMedCrossRef
66.
Zurück zum Zitat Wu, K., Sharma, S., Venkat, S., Liu, K., Zhou, X., & Watabe, K. (2016). Non-coding RNAs in cancer brain metastasis. Frontiers in Bioscience (Scholar Edition), 8, 187–202.CrossRef Wu, K., Sharma, S., Venkat, S., Liu, K., Zhou, X., & Watabe, K. (2016). Non-coding RNAs in cancer brain metastasis. Frontiers in Bioscience (Scholar Edition), 8, 187–202.CrossRef
67.
Zurück zum Zitat Shen, L., Chen, L., Wang, Y., Jiang, X., Xia, H., & Zhuang, Z. (2015). Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. Journal of Neuro-Oncology, 121(1), 101–108.PubMedCrossRef Shen, L., Chen, L., Wang, Y., Jiang, X., Xia, H., & Zhuang, Z. (2015). Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. Journal of Neuro-Oncology, 121(1), 101–108.PubMedCrossRef
68.
Zurück zum Zitat de Oliveira Barros, E. G., Palumbo Jr., A., Mello, P. L., de Mattos, R. M., da Silva, J. H., Pontes, B., et al. (2014). The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis. Clinical & Experimental Metastasis, 31(4), 461–474.CrossRef de Oliveira Barros, E. G., Palumbo Jr., A., Mello, P. L., de Mattos, R. M., da Silva, J. H., Pontes, B., et al. (2014). The reciprocal interactions between astrocytes and prostate cancer cells represent an early event associated with brain metastasis. Clinical & Experimental Metastasis, 31(4), 461–474.CrossRef
69.
Zurück zum Zitat Klein, A., Schwartz, H., Sagi-Assif, O., Meshel, T., Izraely, S., Ben Menachem, S., et al. (2015). Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. The Journal of Pathology, 236(1), 116–127.PubMedCrossRef Klein, A., Schwartz, H., Sagi-Assif, O., Meshel, T., Izraely, S., Ben Menachem, S., et al. (2015). Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. The Journal of Pathology, 236(1), 116–127.PubMedCrossRef
70.
Zurück zum Zitat Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., et al. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentralCrossRef Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., et al. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Jia, W., Martin, T. A., Zhang, G., & Jiang, W. G. (2013). Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Research, 33(6), 2353–2359.PubMed Jia, W., Martin, T. A., Zhang, G., & Jiang, W. G. (2013). Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Research, 33(6), 2353–2359.PubMed
72.
Zurück zum Zitat Blecharz, K. G., Colla, R., Rohde, V., & Vajkoczy, P. (2015). Control of the blood-brain barrier function in cancer cell metastasis. Biology of the Cell, 107(10), 342–371.PubMedCrossRef Blecharz, K. G., Colla, R., Rohde, V., & Vajkoczy, P. (2015). Control of the blood-brain barrier function in cancer cell metastasis. Biology of the Cell, 107(10), 342–371.PubMedCrossRef
73.
Zurück zum Zitat Wilhelm, I., Molnar, J., Fazakas, C., Hasko, J., & Krizbai, I. A. (2013). Role of the blood-brain barrier in the formation of brain metastases. International Journal of Molecular Sciences, 14(1), 1383–1411.PubMedPubMedCentralCrossRef Wilhelm, I., Molnar, J., Fazakas, C., Hasko, J., & Krizbai, I. A. (2013). Role of the blood-brain barrier in the formation of brain metastases. International Journal of Molecular Sciences, 14(1), 1383–1411.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Weidle, U. H., Niewohner, J., & Tiefenthaler, G. (2015). The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genomics Proteomics, 12(4), 167–177.PubMed Weidle, U. H., Niewohner, J., & Tiefenthaler, G. (2015). The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genomics Proteomics, 12(4), 167–177.PubMed
75.
Zurück zum Zitat Winkler, F., Osswald, M., Blaes, J., Liao, Y., Solecki, G., Gommel, M., et al. (2016). Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res. Winkler, F., Osswald, M., Blaes, J., Liao, Y., Solecki, G., Gommel, M., et al. (2016). Impact of blood-brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res.
76.
Zurück zum Zitat Fortin, D. (2012). The blood-brain barrier: its influence in the treatment of brain tumors metastases. Current Cancer Drug Targets, 12(3), 247–259.PubMedCrossRef Fortin, D. (2012). The blood-brain barrier: its influence in the treatment of brain tumors metastases. Current Cancer Drug Targets, 12(3), 247–259.PubMedCrossRef
77.
Zurück zum Zitat Wrobel, J. K., & Toborek, M. (2016). Blood-brain barrier remodeling during brain metastasis formation. Mol Med. Wrobel, J. K., & Toborek, M. (2016). Blood-brain barrier remodeling during brain metastasis formation. Mol Med.
78.
Zurück zum Zitat Yonemori, K., Tsuta, K., Ono, M., Shimizu, C., Hirakawa, A., Hasegawa, T., et al. (2010). Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer, 116(2), 302–308.PubMedCrossRef Yonemori, K., Tsuta, K., Ono, M., Shimizu, C., Hirakawa, A., Hasegawa, T., et al. (2010). Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer, 116(2), 302–308.PubMedCrossRef
79.
Zurück zum Zitat Connell, J. J., Chatain, G., Cornelissen, B., Vallis, K. A., Hamilton, A., Seymour, L., et al. (2013). Selective permeabilization of the blood-brain barrier at sites of metastasis. Journal of the National Cancer Institute, 105(21), 1634–1643.PubMedPubMedCentralCrossRef Connell, J. J., Chatain, G., Cornelissen, B., Vallis, K. A., Hamilton, A., Seymour, L., et al. (2013). Selective permeabilization of the blood-brain barrier at sites of metastasis. Journal of the National Cancer Institute, 105(21), 1634–1643.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Adkins, C. E., Mohammad, A. S., Terrell-Hall, T. B., Dolan, E. L., Shah, N., Sechrest, E., et al. (2016). Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clinical & Experimental Metastasis, 33(4), 373–383.CrossRef Adkins, C. E., Mohammad, A. S., Terrell-Hall, T. B., Dolan, E. L., Shah, N., Sechrest, E., et al. (2016). Characterization of passive permeability at the blood-tumor barrier in five preclinical models of brain metastases of breast cancer. Clinical & Experimental Metastasis, 33(4), 373–383.CrossRef
81.
Zurück zum Zitat Lyle, L. T., Lockman, P. R., Adkins, C. E., Mohammad, A. S., Sechrest, E., Hua, E., et al. (2016). Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin Cancer Res. Lyle, L. T., Lockman, P. R., Adkins, C. E., Mohammad, A. S., Sechrest, E., Hua, E., et al. (2016). Alterations in pericyte subpopulations are associated with elevated blood-tumor barrier permeability in experimental brain metastasis of breast cancer. Clin Cancer Res.
82.
Zurück zum Zitat Zhang, S., Huang, W. C., Zhang, L., Zhang, C., Lowery, F. J., Ding, Z., et al. (2013). SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Research, 73(18), 5764–5774.PubMedPubMedCentralCrossRef Zhang, S., Huang, W. C., Zhang, L., Zhang, C., Lowery, F. J., Ding, Z., et al. (2013). SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases. Cancer Research, 73(18), 5764–5774.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Do, J., Foster, D., Renier, C., Vogel, H., Rosenblum, S., Doyle, T. C., et al. (2014). Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models. Breast Cancer Research and Treatment, 144(1), 93–101.PubMedPubMedCentralCrossRef Do, J., Foster, D., Renier, C., Vogel, H., Rosenblum, S., Doyle, T. C., et al. (2014). Ex vivo Evans blue assessment of the blood brain barrier in three breast cancer brain metastasis models. Breast Cancer Research and Treatment, 144(1), 93–101.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Li, J., Cai, P., Shalviri, A., Henderson, J. T., He, C., Foltz, W. D., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.PubMedCrossRef Li, J., Cai, P., Shalviri, A., Henderson, J. T., He, C., Foltz, W. D., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 8(10), 9925–9940.PubMedCrossRef
85.
Zurück zum Zitat Wan, X., Zheng, X., Pang, X., Pang, Z., Zhao, J., Zhang, Z., et al. (2016). Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget. Wan, X., Zheng, X., Pang, X., Pang, Z., Zhao, J., Zhang, Z., et al. (2016). Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget.
86.
Zurück zum Zitat Kobus, T., Zervantonakis, I. K., Zhang, Y., & McDannold, N. J. (2016). Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. Journal of Controlled Release, 238, 281–288.PubMedCrossRef Kobus, T., Zervantonakis, I. K., Zhang, Y., & McDannold, N. J. (2016). Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. Journal of Controlled Release, 238, 281–288.PubMedCrossRef
Metadaten
Titel
Advances in decoding breast cancer brain metastasis
verfasst von
Chenyu Zhang
Dihua Yu
Publikationsdatum
21.11.2016
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2016
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9638-9

Weitere Artikel der Ausgabe 4/2016

Cancer and Metastasis Reviews 4/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.