Skip to main content
Erschienen in: Cancer Chemotherapy and Pharmacology 2/2020

07.07.2020 | Review Article

Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells

verfasst von: R. Gajendra Reddy, Unis Ahmad Bhat, Sumana Chakravarty, Arvind Kumar

Erschienen in: Cancer Chemotherapy and Pharmacology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Glioblastoma multiforme (GBM) is a lethal grade IV glioma (WHO classification) and widely prevalent primary brain tumor in adults. GBM tumors harbor cellular heterogeneity with the presence of a small subpopulation of tumor cells, described as GBM cancer stem cells (CSCs) that pose resistance to standard anticancer regimens and eventually mediate aggressive relapse or intractable progressive GBM. Existing conventional anticancer therapies for GBM do not target GBM stem cells and are mostly palliative; therefore, exploration of new strategies to target stem cells of GBM has to be prioritized for the development of effective GBM therapy. Recent developments in the understanding of GBM pathophysiology demonstrated dysregulation of epigenetic mechanisms along with the genetic changes in GBM CSCs. Altered expression/activity of key epigenetic regulators, especially histone deacetylases (HDACs) in GBM stem cells has been associated with poor prognosis; inhibiting the activity of HDACs using histone deacetylase inhibitors (HDACi) has been promising as mono-therapeutic in targeting GBM and in sensitizing GBM stem cells to an existing anticancer regimen. Here, we review the development of pan/selective HDACi as potential anticancer agents in targeting the stem cells of glioblastoma as a mono or combination therapy.
Literatur
7.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://​doi.​org/​10.​1056/​NEJMoa043330CrossRefPubMed
10.
Zurück zum Zitat Audia A, Conroy S, Glass R, Bhat KP (2017) The impact of the tumor microenvironment on the properties of glioma stem-like cells. Front Oncol 7:143PubMedPubMedCentral Audia A, Conroy S, Glass R, Bhat KP (2017) The impact of the tumor microenvironment on the properties of glioma stem-like cells. Front Oncol 7:143PubMedPubMedCentral
18.
Zurück zum Zitat Lee JK, Wang J, Sa JK, Ladewig E, Lee HO, Lee IH, Kang HJ, Rosenbloom DS, Camara PG, Liu Z, van Nieuwenhuizen P, Jung SW, Choi SW, Kim J, Chen A, Kim KT, Shin S, Seo YJ, Oh JM, Shin YJ, Park CK, Kong DS, Seol HJ, Blumberg A, Lee JI, Iavarone A, Park WY, Rabadan R, Nam DH (2017) Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet 49(4):594–599. https://doi.org/10.1038/ng.3806CrossRefPubMedPubMedCentral Lee JK, Wang J, Sa JK, Ladewig E, Lee HO, Lee IH, Kang HJ, Rosenbloom DS, Camara PG, Liu Z, van Nieuwenhuizen P, Jung SW, Choi SW, Kim J, Chen A, Kim KT, Shin S, Seo YJ, Oh JM, Shin YJ, Park CK, Kong DS, Seol HJ, Blumberg A, Lee JI, Iavarone A, Park WY, Rabadan R, Nam DH (2017) Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet 49(4):594–599. https://​doi.​org/​10.​1038/​ng.​3806CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Qiang L, Yang Y, Ma Y-J, Chen F-H, Zhang L-B, Liu W, Qi Q, Lu N, Tao L, Wang X-T (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21PubMed Qiang L, Yang Y, Ma Y-J, Chen F-H, Zhang L-B, Liu W, Qi Q, Lu N, Tao L, Wang X-T (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21PubMed
21.
Zurück zum Zitat Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMed
25.
Zurück zum Zitat Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Can Res 66(16):7843–7848 Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Can Res 66(16):7843–7848
26.
Zurück zum Zitat Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 27(9):901–908PubMed Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 27(9):901–908PubMed
27.
Zurück zum Zitat Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian C (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci 108(38):16062–16067PubMedPubMedCentral Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian C (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci 108(38):16062–16067PubMedPubMedCentral
28.
Zurück zum Zitat Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80(5):654–665PubMedPubMedCentral Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80(5):654–665PubMedPubMedCentral
29.
Zurück zum Zitat Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2016) Emerging targets for glioblastoma stem cell therapy. J Biomed Res 30(1):19PubMed Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2016) Emerging targets for glioblastoma stem cell therapy. J Biomed Res 30(1):19PubMed
30.
Zurück zum Zitat Hosein AN, Lim YC, Day B, Stringer B, Rose S, Head R, Cosgrove L, Sminia P, Fay M, Martin JH (2015) The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 122(2):263–271PubMed Hosein AN, Lim YC, Day B, Stringer B, Rose S, Head R, Cosgrove L, Sminia P, Fay M, Martin JH (2015) The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells. J Neurooncol 122(2):263–271PubMed
35.
Zurück zum Zitat Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885. https://doi.org/10.1016/j.cell.2012.02.028CrossRefPubMed Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148(5):873–885. https://​doi.​org/​10.​1016/​j.​cell.​2012.​02.​028CrossRefPubMed
37.
Zurück zum Zitat Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, Li F, Im KM, Wu K, Wu H, Ye X, Li G, Wang L, Zhang B, Liang J, Xie W, Wu R, Jiang H, Liu X, Yu C, Zheng H, Jian M, Nie L, Wan L, Shi M, Sun X, Tang A, Guo G, Gui Y, Cai Z, Li J, Wang W, Lu Z, Zhang X, Bolund L, Kristiansen K, Wang J, Yang H, Dean M, Wang J (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1(1):12. https://doi.org/10.1186/2047-217X-1-12CrossRefPubMedPubMedCentral Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, Li F, Im KM, Wu K, Wu H, Ye X, Li G, Wang L, Zhang B, Liang J, Xie W, Wu R, Jiang H, Liu X, Yu C, Zheng H, Jian M, Nie L, Wan L, Shi M, Sun X, Tang A, Guo G, Gui Y, Cai Z, Li J, Wang W, Lu Z, Zhang X, Bolund L, Kristiansen K, Wang J, Yang H, Dean M, Wang J (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. Gigascience 1(1):12. https://​doi.​org/​10.​1186/​2047-217X-1-12CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895. https://doi.org/10.1016/j.cell.2012.02.025CrossRefPubMedPubMedCentral Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895. https://​doi.​org/​10.​1016/​j.​cell.​2012.​02.​025CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y, Wu R, Jian M, Chen R, Zhang F, Xu L, Fan F, He J, Liang Q, Wang H, Hu X, He M, Zhang X, Zheng H, Li Q, Wu H, Chen Y, Yang X, Zhu S, Xu X, Yang H, Wang J, Zhang X, Sung JJ, Li Y, Wang J (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24(6):701–712. https://doi.org/10.1038/cr.2014.43CrossRefPubMedPubMedCentral Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, Li X, Bao L, Li X, Hou Y, Wu R, Jian M, Chen R, Zhang F, Xu L, Fan F, He J, Liang Q, Wang H, Hu X, He M, Zhang X, Zheng H, Li Q, Wu H, Chen Y, Yang X, Zhu S, Xu X, Yang H, Wang J, Zhang X, Sung JJ, Li Y, Wang J (2014) Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res 24(6):701–712. https://​doi.​org/​10.​1038/​cr.​2014.​43CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N, Jamieson L, Vyas P, Anderson K, Segerstolpe A, Qian H, Olsson-Stromberg U, Mustjoki S, Sandberg R, Jacobsen SEW, Mead AJ (2017) Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med 23(6):692–702. https://doi.org/10.1038/nm.4336CrossRefPubMed Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N, Jamieson L, Vyas P, Anderson K, Segerstolpe A, Qian H, Olsson-Stromberg U, Mustjoki S, Sandberg R, Jacobsen SEW, Mead AJ (2017) Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med 23(6):692–702. https://​doi.​org/​10.​1038/​nm.​4336CrossRefPubMed
60.
Zurück zum Zitat Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C (2008) Identification of cells initiating human melanomas. Nature 451(7176):345PubMedPubMedCentral Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C (2008) Identification of cells initiating human melanomas. Nature 451(7176):345PubMedPubMedCentral
61.
Zurück zum Zitat Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594PubMedPubMedCentral Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594PubMedPubMedCentral
63.
Zurück zum Zitat Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS, Crawford H, Dufour JU, Botchkina WLAJYYGI (2009) Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genom Proteom 6(1):19–29 Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS, Crawford H, Dufour JU, Botchkina WLAJYYGI (2009) Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis. Cancer Genom Proteom 6(1):19–29
68.
Zurück zum Zitat Floor S, Van Staveren W, Larsimont D, Dumont JE, Maenhaut C (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609–4621PubMed Floor S, Van Staveren W, Larsimont D, Dumont JE, Maenhaut C (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating–cancer stem cells: distinct, overlapping or same populations. Oncogene 30(46):4609–4621PubMed
71.
Zurück zum Zitat Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203PubMedPubMedCentral Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203PubMedPubMedCentral
74.
Zurück zum Zitat Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15(3):244–253PubMedPubMedCentral Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15(3):244–253PubMedPubMedCentral
83.
Zurück zum Zitat Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17(4):362–375. https://doi.org/10.1016/j.ccr.2009.12.049CrossRefPubMed Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17(4):362–375. https://​doi.​org/​10.​1016/​j.​ccr.​2009.​12.​049CrossRefPubMed
84.
Zurück zum Zitat Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalpra L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28(15):1807–1811. https://doi.org/10.1038/onc.2009.27CrossRefPubMed Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalpra L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28(15):1807–1811. https://​doi.​org/​10.​1038/​onc.​2009.​27CrossRefPubMed
86.
87.
Zurück zum Zitat Facchino S, Abdouh M, Bernier G (2011) Brain cancer stem cells: current status on glioblastoma multiforme. Cancers 3(2):1777–1797PubMedPubMedCentral Facchino S, Abdouh M, Bernier G (2011) Brain cancer stem cells: current status on glioblastoma multiforme. Cancers 3(2):1777–1797PubMedPubMedCentral
88.
Zurück zum Zitat Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199PubMed Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199PubMed
89.
Zurück zum Zitat Auffinger B, Tobias A, Han Y, Lee G, Guo D, Dey M, Lesniak M, Ahmed A (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21(7):1119PubMedPubMedCentral Auffinger B, Tobias A, Han Y, Lee G, Guo D, Dey M, Lesniak M, Ahmed A (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21(7):1119PubMedPubMedCentral
91.
Zurück zum Zitat Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, Curry WT, Martuza RL, Rivera MN, Rossetti N, Kasif S, Beik S, Kadri S, Tirosh I, Wortman I, Shalek AK, Rozenblatt-Rosen O, Regev A, Louis DN, Bernstein BE (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157(3):580–594. https://doi.org/10.1016/j.cell.2014.02.030CrossRefPubMedPubMedCentral Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, Curry WT, Martuza RL, Rivera MN, Rossetti N, Kasif S, Beik S, Kadri S, Tirosh I, Wortman I, Shalek AK, Rozenblatt-Rosen O, Regev A, Louis DN, Bernstein BE (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157(3):580–594. https://​doi.​org/​10.​1016/​j.​cell.​2014.​02.​030CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Nduom EK-E, Hadjipanayis CG, Van Meir EG (2012) Glioblastoma cancer stem-like cells–implications for pathogenesis and treatment. Cancer J (Sudbury, Mass) 18(1):100 Nduom EK-E, Hadjipanayis CG, Van Meir EG (2012) Glioblastoma cancer stem-like cells–implications for pathogenesis and treatment. Cancer J (Sudbury, Mass) 18(1):100
94.
Zurück zum Zitat Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem cells 31(5):857–869PubMed Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem cells 31(5):857–869PubMed
95.
Zurück zum Zitat Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z, Fang J (2008) Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Experim Clin Cancer Res 27(1):85 Zhang M, Song T, Yang L, Chen R, Wu L, Yang Z, Fang J (2008) Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Experim Clin Cancer Res 27(1):85
96.
Zurück zum Zitat Gangemi RMR, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48PubMed Gangemi RMR, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27(1):40–48PubMed
99.
Zurück zum Zitat Jin X, Jin X, Jung J-E, Beck S, Kim H (2013) Cell surface Nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun 433(4):496–501PubMed Jin X, Jin X, Jung J-E, Beck S, Kim H (2013) Cell surface Nestin is a biomarker for glioma stem cells. Biochem Biophys Res Commun 433(4):496–501PubMed
101.
Zurück zum Zitat Lagadec C, Vlashi E, Frohnen P, Alhiyari Y, Chan M, Pajonk F (2014) The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer-and glioma-initiating cells. Stem Cells 32(1):135–144PubMedPubMedCentral Lagadec C, Vlashi E, Frohnen P, Alhiyari Y, Chan M, Pajonk F (2014) The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer-and glioma-initiating cells. Stem Cells 32(1):135–144PubMedPubMedCentral
102.
Zurück zum Zitat Venugopal C, Li N, Wang X, Manoranjan B, Hawkins C, Gunnarsson T, Hollenberg R, Klurfan P, Murty N, Kwiecien J (2012) Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res 8(2):141–153PubMed Venugopal C, Li N, Wang X, Manoranjan B, Hawkins C, Gunnarsson T, Hollenberg R, Klurfan P, Murty N, Kwiecien J (2012) Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res 8(2):141–153PubMed
103.
Zurück zum Zitat Sibin M, Lavanya C, Bhat DI, Rao N, Geethashree N, Vibhuti W, Chetan G (2015) CD133 and BMI1 expressions and its prognostic role in primary glioblastoma. J Genet 94(4):689–696PubMed Sibin M, Lavanya C, Bhat DI, Rao N, Geethashree N, Vibhuti W, Chetan G (2015) CD133 and BMI1 expressions and its prognostic role in primary glioblastoma. J Genet 94(4):689–696PubMed
104.
Zurück zum Zitat Vora P, Seyfrid M, Venugopal C, Qazi MA, Salim S, Isserlin R, Subapanditha M, O’Farrell E, Mahendram S, Singh M (2019) Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells. J Neurooncol 143(3):417–428PubMed Vora P, Seyfrid M, Venugopal C, Qazi MA, Salim S, Isserlin R, Subapanditha M, O’Farrell E, Mahendram S, Singh M (2019) Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells. J Neurooncol 143(3):417–428PubMed
105.
Zurück zum Zitat Zhang L, Yan Y, Jiang Y, Cui Y, Zou Y, Qian J, Luo C, Lu Y, Wu X (2015) The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome. J Neurooncol 121(2):261–268PubMed Zhang L, Yan Y, Jiang Y, Cui Y, Zou Y, Qian J, Luo C, Lu Y, Wu X (2015) The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome. J Neurooncol 121(2):261–268PubMed
106.
Zurück zum Zitat Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T (2016) Cancer stem cell hierarchy in glioblastoma multiforme. Front Surgery 3:21 Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T (2016) Cancer stem cell hierarchy in glioblastoma multiforme. Front Surgery 3:21
108.
Zurück zum Zitat Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441PubMedPubMedCentral Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441PubMedPubMedCentral
113.
Zurück zum Zitat Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, dePinho RA (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437. https://doi.org/10.1101/sqb.2008.73.047CrossRefPubMed Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, dePinho RA (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437. https://​doi.​org/​10.​1101/​sqb.​2008.​73.​047CrossRefPubMed
114.
Zurück zum Zitat Field M, Alvarez A, Bushnev S, Sugaya K (2010) Embryonic stem cell markers distinguishing cancer stem cells from normal human neuronal stem cell populations in malignant glioma patients. Clin Neurosurg 57:151–159PubMed Field M, Alvarez A, Bushnev S, Sugaya K (2010) Embryonic stem cell markers distinguishing cancer stem cells from normal human neuronal stem cell populations in malignant glioma patients. Clin Neurosurg 57:151–159PubMed
115.
Zurück zum Zitat Cheng J-X, Liu B-L, Zhang X (2009) How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 35(5):403–408PubMed Cheng J-X, Liu B-L, Zhang X (2009) How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 35(5):403–408PubMed
117.
118.
Zurück zum Zitat Sandberg CJ, Altschuler G, Jeong J, Stromme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost O, Helseth E, Vik-Mo EO, Hide W, Langmoen IA (2013) Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res 319(14):2230–2243. https://doi.org/10.1016/j.yexcr.2013.06.004CrossRefPubMed Sandberg CJ, Altschuler G, Jeong J, Stromme KK, Stangeland B, Murrell W, Grasmo-Wendler UH, Myklebost O, Helseth E, Vik-Mo EO, Hide W, Langmoen IA (2013) Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt- signaling and a fingerprint associated with clinical outcome. Exp Cell Res 319(14):2230–2243. https://​doi.​org/​10.​1016/​j.​yexcr.​2013.​06.​004CrossRefPubMed
119.
Zurück zum Zitat Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655PubMedPubMedCentral Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655PubMedPubMedCentral
121.
Zurück zum Zitat Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, Forrest WF, Pujara K, Carrillo JA, Pandita A (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29(34):4482PubMedPubMedCentral Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, Forrest WF, Pujara K, Carrillo JA, Pandita A (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29(34):4482PubMedPubMedCentral
122.
Zurück zum Zitat Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, Shareef SJ, Najm FJ, van Galen P, Wakimoto H, Cahill DP, Rich JN, Aster JC, Suva ML, Patel AP, Bernstein BE (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell. https://doi.org/10.1016/j.stem.2016.11.003CrossRefPubMed Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ, Shareef SJ, Najm FJ, van Galen P, Wakimoto H, Cahill DP, Rich JN, Aster JC, Suva ML, Patel AP, Bernstein BE (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell. https://​doi.​org/​10.​1016/​j.​stem.​2016.​11.​003CrossRefPubMed
123.
Zurück zum Zitat Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, Ohno K (2013) Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 119(5):1145–1155PubMed Tamura K, Aoyagi M, Ando N, Ogishima T, Wakimoto H, Yamamoto M, Ohno K (2013) Expansion of CD133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy. J Neurosurg 119(5):1145–1155PubMed
125.
Zurück zum Zitat Murata H, Yoshimoto K, Hatae R, Akagi Y, Mizoguchi M, Hata N, Kuga D, Nakamizo A, Amano T, Sayama T, Iihara K (2015) Detection of proneural/mesenchymal marker expression in glioblastoma: temporospatial dynamics and association with chromatin-modifying gene expression. J Neurooncol 125(1):33–41. https://doi.org/10.1007/s11060-015-1886-yCrossRefPubMed Murata H, Yoshimoto K, Hatae R, Akagi Y, Mizoguchi M, Hata N, Kuga D, Nakamizo A, Amano T, Sayama T, Iihara K (2015) Detection of proneural/mesenchymal marker expression in glioblastoma: temporospatial dynamics and association with chromatin-modifying gene expression. J Neurooncol 125(1):33–41. https://​doi.​org/​10.​1007/​s11060-015-1886-yCrossRefPubMed
126.
Zurück zum Zitat Ayer DE (1999) Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9(5):193–198PubMed Ayer DE (1999) Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9(5):193–198PubMed
127.
Zurück zum Zitat Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198PubMed Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198PubMed
128.
Zurück zum Zitat Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang S-W (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10(6):935–954PubMedPubMedCentral Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang S-W (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10(6):935–954PubMedPubMedCentral
130.
Zurück zum Zitat Marampon F, Megiorni F, Camero S, Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura L, De Felice F (2017) HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett 397:1–11PubMed Marampon F, Megiorni F, Camero S, Crescioli C, McDowell HP, Sferra R, Vetuschi A, Pompili S, Ventura L, De Felice F (2017) HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett 397:1–11PubMed
132.
Zurück zum Zitat Pillonel V, Reichert N, Cao C, Heideman MR, Yamaguchi T, Matthias G, Tzankov A, Matthias P (2016) Histone deacetylase 1 plays a predominant pro-oncogenic role in Eμ-myc driven B cell lymphoma. Sci Rep 6:37772PubMedPubMedCentral Pillonel V, Reichert N, Cao C, Heideman MR, Yamaguchi T, Matthias G, Tzankov A, Matthias P (2016) Histone deacetylase 1 plays a predominant pro-oncogenic role in Eμ-myc driven B cell lymphoma. Sci Rep 6:37772PubMedPubMedCentral
133.
Zurück zum Zitat Pinazza M, Ghisi M, Minuzzo S, Agnusdei V, Fossati G, Ciminale V, Pezzè L, Ciribilli Y, Pilotto G, Venturoli C (2018) Histone deacetylase 6 controls Notch3 trafficking and degradation in T-cell acute lymphoblastic leukemia cells. Oncogene 37(28):3839–3851PubMedPubMedCentral Pinazza M, Ghisi M, Minuzzo S, Agnusdei V, Fossati G, Ciminale V, Pezzè L, Ciribilli Y, Pilotto G, Venturoli C (2018) Histone deacetylase 6 controls Notch3 trafficking and degradation in T-cell acute lymphoblastic leukemia cells. Oncogene 37(28):3839–3851PubMedPubMedCentral
135.
Zurück zum Zitat Tharkar-Promod S, Johnson DP, Bennett SE, Dennis EM, Banowsky BG, Jones SS, Shearstone JR, Quayle SN, Min C, Jarpe M (2018) HDAC1, 2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia 32(1):49–60PubMed Tharkar-Promod S, Johnson DP, Bennett SE, Dennis EM, Banowsky BG, Jones SS, Shearstone JR, Quayle SN, Min C, Jarpe M (2018) HDAC1, 2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia 32(1):49–60PubMed
136.
Zurück zum Zitat Johnson DP, Spitz GS, Tharkar S, Quayle SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK, Cairns BR (2015) HDAC1, 2 inhibition impairs EZH2-and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget 6(7):4863PubMed Johnson DP, Spitz GS, Tharkar S, Quayle SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK, Cairns BR (2015) HDAC1, 2 inhibition impairs EZH2-and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget 6(7):4863PubMed
137.
Zurück zum Zitat Ouaissi M, Silvy F, Loncle C, Ferraz da Silva D, Martins Abreu C, Martinez E, Berthezene P, Cadra S, Le Treut YP, Hardwigsen J, Sastre B, Sielezneff I, Benkoel L, Delgrande J, Ouaissi A, Iovanna J, Lombardo D, Mas E (2014) Further characterization of HDAC and SIRT gene expression patterns in pancreatic cancer and their relation to disease outcome. PLoS ONE 9(9):e108520. https://doi.org/10.1371/journal.pone.0108520CrossRefPubMedPubMedCentral Ouaissi M, Silvy F, Loncle C, Ferraz da Silva D, Martins Abreu C, Martinez E, Berthezene P, Cadra S, Le Treut YP, Hardwigsen J, Sastre B, Sielezneff I, Benkoel L, Delgrande J, Ouaissi A, Iovanna J, Lombardo D, Mas E (2014) Further characterization of HDAC and SIRT gene expression patterns in pancreatic cancer and their relation to disease outcome. PLoS ONE 9(9):e108520. https://​doi.​org/​10.​1371/​journal.​pone.​0108520CrossRefPubMedPubMedCentral
139.
Zurück zum Zitat Campos B, Bermejo JL, Han L, Felsberg J, Ahmadi R, Grabe N, Reifenberger G, Unterberg A, Herold-Mende C (2011) Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Sci 102(2):387–392PubMed Campos B, Bermejo JL, Han L, Felsberg J, Ahmadi R, Grabe N, Reifenberger G, Unterberg A, Herold-Mende C (2011) Expression of nuclear receptor corepressors and class I histone deacetylases in astrocytic gliomas. Cancer Sci 102(2):387–392PubMed
140.
Zurück zum Zitat Dali-Youcef N, Froelich S, Moussallieh F-M, Chibbaro S, Noël G, Namer IJ, Heikkinen S, Auwerx J (2015) Gene expression mapping of histone deacetylases and co-factors, and correlation with survival time and 1 h-hrmas metabolomic profile in human gliomas. Sci Rep 5:9087PubMedPubMedCentral Dali-Youcef N, Froelich S, Moussallieh F-M, Chibbaro S, Noël G, Namer IJ, Heikkinen S, Auwerx J (2015) Gene expression mapping of histone deacetylases and co-factors, and correlation with survival time and 1 h-hrmas metabolomic profile in human gliomas. Sci Rep 5:9087PubMedPubMedCentral
141.
Zurück zum Zitat Liu Q, Zheng JM, Chen JK, Yan XL, Chen HM, Nong WX, Huang HQ (2014) Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1. Molecular Med Rep 10(4):2045–2050 Liu Q, Zheng JM, Chen JK, Yan XL, Chen HM, Nong WX, Huang HQ (2014) Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1. Molecular Med Rep 10(4):2045–2050
142.
Zurück zum Zitat Zhu J, Wan H, Xue C, Jiang T, Qian C, Zhang Y (2013) Histone deacetylase 3 implicated in the pathogenesis of children glioma by promoting glioma cell proliferation and migration. Brain Res 1520:15–22PubMed Zhu J, Wan H, Xue C, Jiang T, Qian C, Zhang Y (2013) Histone deacetylase 3 implicated in the pathogenesis of children glioma by promoting glioma cell proliferation and migration. Brain Res 1520:15–22PubMed
143.
Zurück zum Zitat Yang W, Liu Y, Gao R, Yu H, Sun T (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176PubMed Yang W, Liu Y, Gao R, Yu H, Sun T (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176PubMed
149.
Zurück zum Zitat Sayd S, Thirant C, El-Habr EA, Lipecka J, Dubois LG, Bogeas A, Tahiri-Jouti N, Chneiweiss H, Junier M-P (2014) Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev Rep 10(1):103–113PubMed Sayd S, Thirant C, El-Habr EA, Lipecka J, Dubois LG, Bogeas A, Tahiri-Jouti N, Chneiweiss H, Junier M-P (2014) Sirtuin-2 activity is required for glioma stem cell proliferation arrest but not necrosis induced by resveratrol. Stem Cell Rev Rep 10(1):103–113PubMed
150.
Zurück zum Zitat Park H-K, Hong J-H, Oh YT, Kim SS, Yin J, Lee A-J, Chae YC, Kim JH, Park S-H, Park C-K (2019) Interplay between TRAP1 and sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells. Can Res 79(7):1369–1382 Park H-K, Hong J-H, Oh YT, Kim SS, Yin J, Lee A-J, Chae YC, Kim JH, Park S-H, Park C-K (2019) Interplay between TRAP1 and sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells. Can Res 79(7):1369–1382
151.
Zurück zum Zitat Yamashita AS, da Costa RM, Borodovsky A, Festuccia WT, Chan T, Riggins GJ (2019) Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide. Neuro-oncology 21(2):189–200PubMed Yamashita AS, da Costa RM, Borodovsky A, Festuccia WT, Chan T, Riggins GJ (2019) Demethylation and epigenetic modification with 5-azacytidine reduces IDH1 mutant glioma growth in combination with temozolomide. Neuro-oncology 21(2):189–200PubMed
152.
Zurück zum Zitat Grinshtein N, Rioseco CC, Marcellus R, Uehling D, Aman A, Lun X, Muto O, Podmore L, Lever J, Shen Y (2016) Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget 7(37):59360PubMedPubMedCentral Grinshtein N, Rioseco CC, Marcellus R, Uehling D, Aman A, Lun X, Muto O, Podmore L, Lever J, Shen Y (2016) Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget 7(37):59360PubMedPubMedCentral
153.
Zurück zum Zitat Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J (2015) Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro-oncology 17(11):1463–1473PubMedPubMedCentral Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J (2015) Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma. Neuro-oncology 17(11):1463–1473PubMedPubMedCentral
154.
Zurück zum Zitat Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336PubMedPubMedCentral Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336PubMedPubMedCentral
155.
Zurück zum Zitat Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M (2011) HDACi–going through the mechanisms. Front Biosci 16:340–359 Wanczyk M, Roszczenko K, Marcinkiewicz K, Bojarczuk K, Kowara M, Winiarska M (2011) HDACi–going through the mechanisms. Front Biosci 16:340–359
156.
Zurück zum Zitat Hsu C-C, Chang W-C, Hsu T-I, Liu J-J, Yeh S-H, Wang J-Y, Liou J-P, Ko C-Y, Chang K-Y, Chuang J-Y (2016) Suberoylanilide hydroxamic acid represses glioma stem-like cells. J Biomed Sci 23(1):81PubMedPubMedCentral Hsu C-C, Chang W-C, Hsu T-I, Liu J-J, Yeh S-H, Wang J-Y, Liou J-P, Ko C-Y, Chang K-Y, Chuang J-Y (2016) Suberoylanilide hydroxamic acid represses glioma stem-like cells. J Biomed Sci 23(1):81PubMedPubMedCentral
157.
Zurück zum Zitat Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A, Franco P, Altucci L, Florio T, Stoppelli MP (2019) Histone deacetylase inhibitors impair vasculogenic mimicry from glioblastoma cells. Cancers 11(6):747PubMedCentral Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A, Franco P, Altucci L, Florio T, Stoppelli MP (2019) Histone deacetylase inhibitors impair vasculogenic mimicry from glioblastoma cells. Cancers 11(6):747PubMedCentral
158.
Zurück zum Zitat Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K (2015) The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 55(1):7–20PubMed Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K (2015) The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci 55(1):7–20PubMed
159.
Zurück zum Zitat Orzan F, Pellegatta S, Poliani P, Pisati F, Caldera V, Menghi F, Kapetis D, Marras C, Schiffer D, Finocchiaro G (2011) Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol 37(4):381–394PubMed Orzan F, Pellegatta S, Poliani P, Pisati F, Caldera V, Menghi F, Kapetis D, Marras C, Schiffer D, Finocchiaro G (2011) Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol 37(4):381–394PubMed
160.
Zurück zum Zitat Riva G, Butta V, Cilibrasi C, Baronchelli S, Redaelli S, Dalprà L, Lavitrano M, Bentivegna A (2016) Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity. Oncol Rep 35(5):2811–2824PubMed Riva G, Butta V, Cilibrasi C, Baronchelli S, Redaelli S, Dalprà L, Lavitrano M, Bentivegna A (2016) Epigenetic targeting of glioma stem cells: Short-term and long-term treatments with valproic acid modulate DNA methylation and differentiation behavior, but not temozolomide sensitivity. Oncol Rep 35(5):2811–2824PubMed
161.
Zurück zum Zitat de Almeida SF, Caesar L, Jaeger M, Nör C, Abujamra AL, Schwartsmann G, de Farias CB, Brunetto AL, da Costa Lopez PL, Roesler R (2014) Inhibitory activities of trichostatin A in U87 glioblastoma cells and tumorsphere-derived cells. J Mol Neurosci 54(1):27–40 de Almeida SF, Caesar L, Jaeger M, Nör C, Abujamra AL, Schwartsmann G, de Farias CB, Brunetto AL, da Costa Lopez PL, Roesler R (2014) Inhibitory activities of trichostatin A in U87 glioblastoma cells and tumorsphere-derived cells. J Mol Neurosci 54(1):27–40
162.
Zurück zum Zitat Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J, Matsui W, DiMeco F, Piccirillo SM, Vescovi AL (2009) DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27(7):1473–1486PubMedPubMedCentral Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J, Matsui W, DiMeco F, Piccirillo SM, Vescovi AL (2009) DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27(7):1473–1486PubMedPubMedCentral
163.
Zurück zum Zitat Marampon F, Leoni F, Mancini A, Pietrantoni I, Codenotti S, Letizia F, Megiorni F, Porro G, Galbiati E, Pozzi P (2019) Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. J Cancer Res Clin Oncol 145(2):393–409PubMed Marampon F, Leoni F, Mancini A, Pietrantoni I, Codenotti S, Letizia F, Megiorni F, Porro G, Galbiati E, Pozzi P (2019) Histone deacetylase inhibitor ITF2357 (givinostat) reverts transformed phenotype and counteracts stemness in in vitro and in vivo models of human glioblastoma. J Cancer Res Clin Oncol 145(2):393–409PubMed
164.
Zurück zum Zitat Angeletti F, Fossati G, Pattarozzi A, Würth R, Solari A, Daga A, Masiello I, Barbieri F, Florio T, Comincini S (2016) Inhibition of the autophagy pathway synergistically potentiates the cytotoxic activity of givinostat (ITF2357) on human glioblastoma cancer stem cells. Front Mol Neurosci 9:107PubMedPubMedCentral Angeletti F, Fossati G, Pattarozzi A, Würth R, Solari A, Daga A, Masiello I, Barbieri F, Florio T, Comincini S (2016) Inhibition of the autophagy pathway synergistically potentiates the cytotoxic activity of givinostat (ITF2357) on human glioblastoma cancer stem cells. Front Mol Neurosci 9:107PubMedPubMedCentral
165.
Zurück zum Zitat Rotili D, Tarantino D, Carafa V, Paolini C, Jörg S, Jung M, Botta G, Di Maro S, Novellino E, Steinkühler C (2012) Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells. J Med Chem 55(18):8193–8197PubMed Rotili D, Tarantino D, Carafa V, Paolini C, Jörg S, Jung M, Botta G, Di Maro S, Novellino E, Steinkühler C (2012) Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells. J Med Chem 55(18):8193–8197PubMed
166.
Zurück zum Zitat Nör C, Sassi FA, de Farias CB, Schwartsmann G, Abujamra AL, Lenz G, Brunetto AL, Roesler R (2013) The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Mol Neurobiol 48(3):533–543PubMed Nör C, Sassi FA, de Farias CB, Schwartsmann G, Abujamra AL, Lenz G, Brunetto AL, Roesler R (2013) The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells. Mol Neurobiol 48(3):533–543PubMed
167.
Zurück zum Zitat Milde T, Kleber S, Korshunov A, Witt H, Hielscher T, Koch P, Kopp H-G, Jugold M, Deubzer HE, Oehme I (2011) A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathol 122(5):637PubMedPubMedCentral Milde T, Kleber S, Korshunov A, Witt H, Hielscher T, Koch P, Kopp H-G, Jugold M, Deubzer HE, Oehme I (2011) A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathol 122(5):637PubMedPubMedCentral
168.
Zurück zum Zitat Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, Henriksson R, Hedman H (2012) Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Res 32(7):2407–2413PubMed Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, Henriksson R, Hedman H (2012) Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Res 32(7):2407–2413PubMed
169.
Zurück zum Zitat Sung GJ, Kim SH, Kwak S, Park SH, Song JH, Jung JH, Kim H, Choi KC (2019) Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 66(3):e12556PubMed Sung GJ, Kim SH, Kwak S, Park SH, Song JH, Jung JH, Kim H, Choi KC (2019) Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 66(3):e12556PubMed
170.
Zurück zum Zitat Booth L, Roberts JL, Conley A, Cruickshanks N, Ridder T, Grant S, Poklepovic A, Dent P (2014) HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biol Ther 15(3):305–316PubMed Booth L, Roberts JL, Conley A, Cruickshanks N, Ridder T, Grant S, Poklepovic A, Dent P (2014) HDAC inhibitors enhance the lethality of low dose salinomycin in parental and stem-like GBM cells. Cancer Biol Ther 15(3):305–316PubMed
171.
Zurück zum Zitat Pont LMB, Spoor JK, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CM, van der Spek PJ, Lamfers ML, Leenstra S (2014) The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 5(11–12):445 Pont LMB, Spoor JK, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CM, van der Spek PJ, Lamfers ML, Leenstra S (2014) The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 5(11–12):445
172.
Zurück zum Zitat Tung B, Ma D, Wang S, Oyinlade O, Laterra J, Ying M, Lv S-Q, Wei S, Xia S (2018) Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer 18(1):1025PubMedPubMedCentral Tung B, Ma D, Wang S, Oyinlade O, Laterra J, Ying M, Lv S-Q, Wei S, Xia S (2018) Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer 18(1):1025PubMedPubMedCentral
173.
Zurück zum Zitat Pont LMB, Kleijn A, Kloezeman JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven CM, Lamfers ML (2015) The HDAC inhibitors scriptaid and LBH589 combined with the oncolytic virus Delta24-RGD exert enhanced anti-tumor efficacy in patient-derived glioblastoma cells. PLoS ONE 10(5):e0127058 Pont LMB, Kleijn A, Kloezeman JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven CM, Lamfers ML (2015) The HDAC inhibitors scriptaid and LBH589 combined with the oncolytic virus Delta24-RGD exert enhanced anti-tumor efficacy in patient-derived glioblastoma cells. PLoS ONE 10(5):e0127058
175.
Zurück zum Zitat Siegal T (2013) Which drug or drug delivery system can change clinical practice for brain tumor therapy? Neuro-oncology 15(6):656–669PubMedPubMedCentral Siegal T (2013) Which drug or drug delivery system can change clinical practice for brain tumor therapy? Neuro-oncology 15(6):656–669PubMedPubMedCentral
177.
Zurück zum Zitat Zhao J (2016) Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther 160:145–158PubMedPubMedCentral Zhao J (2016) Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther 160:145–158PubMedPubMedCentral
178.
Zurück zum Zitat Di C, Zhao Y (2015) Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer. Experim Therapeutic Med 9(2):289–293 Di C, Zhao Y (2015) Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer. Experim Therapeutic Med 9(2):289–293
179.
Zurück zum Zitat Rabé M, Dumont S, Álvarez-Arenas A, Janati H, Belmonte-Beitia J, Calvo GF, Thibault-Carpentier C, Séry Q, Chauvin C, Joalland N (2020) Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis 11(1):1–14 Rabé M, Dumont S, Álvarez-Arenas A, Janati H, Belmonte-Beitia J, Calvo GF, Thibault-Carpentier C, Séry Q, Chauvin C, Joalland N (2020) Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis 11(1):1–14
181.
Zurück zum Zitat Xiao JJ, Foraker AB, Swaan PW, Liu S, Huang Y, Dai Z, Chen J, Sadée W, Byrd J, Marcucci G (2005) Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J Pharmacol Exp Ther 313(1):268–276PubMed Xiao JJ, Foraker AB, Swaan PW, Liu S, Huang Y, Dai Z, Chen J, Sadée W, Byrd J, Marcucci G (2005) Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J Pharmacol Exp Ther 313(1):268–276PubMed
182.
Zurück zum Zitat Kim G-H, Choi SY, Oh T-I, Kan S-Y, Kang H, Lee S, Oh T, Ko HM, Lim J-H (2019) IDH1R132H Causes Resistance to HDAC Inhibitors by Increasing NANOG in Glioblastoma Cells. Int J Mol Sci 20(11):2679PubMedCentral Kim G-H, Choi SY, Oh T-I, Kan S-Y, Kang H, Lee S, Oh T, Ko HM, Lim J-H (2019) IDH1R132H Causes Resistance to HDAC Inhibitors by Increasing NANOG in Glioblastoma Cells. Int J Mol Sci 20(11):2679PubMedCentral
183.
Zurück zum Zitat Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S, Chakravarty S (2019) Crafting carbazole-based vorinostat and tubastatin-a-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega 4(17):17279–17294PubMedPubMedCentral Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S, Chakravarty S (2019) Crafting carbazole-based vorinostat and tubastatin-a-like histone deacetylase (HDAC) inhibitors with potent in vitro and in vivo neuroactive functions. ACS Omega 4(17):17279–17294PubMedPubMedCentral
184.
Zurück zum Zitat Elechalawar CK, Bhattacharya D, Ahmed MT, Gora H, Sridharan K, Chaturbedy P, Sinha SH, Jaggarapu MMCS, Narayan KP, Chakravarty S (2019) Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere–cationic folate nanoconjugate. Nanoscale Adv 1(9):3555–3567 Elechalawar CK, Bhattacharya D, Ahmed MT, Gora H, Sridharan K, Chaturbedy P, Sinha SH, Jaggarapu MMCS, Narayan KP, Chakravarty S (2019) Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere–cationic folate nanoconjugate. Nanoscale Adv 1(9):3555–3567
185.
Zurück zum Zitat Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM (2018) Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine 13(20):2579–2596PubMed Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM (2018) Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine 13(20):2579–2596PubMed
186.
Zurück zum Zitat Bhunia S, Vangala V, Bhattacharya D, Ravuri HG, Kuncha M, Chakravarty S, Sistla R, Chaudhuri A (2017) Large amino acid transporter 1 selective liposomes of L-DOPA functionalized amphiphile for combating glioblastoma. Mol Pharm 14(11):3834–3847PubMed Bhunia S, Vangala V, Bhattacharya D, Ravuri HG, Kuncha M, Chakravarty S, Sistla R, Chaudhuri A (2017) Large amino acid transporter 1 selective liposomes of L-DOPA functionalized amphiphile for combating glioblastoma. Mol Pharm 14(11):3834–3847PubMed
187.
Zurück zum Zitat Saha S, Venu Y, Bhattacharya D, Kompella SD, Madhusudana K, Chakravarty S, Ramakrishna S, Chaudhuri A (2017) Combating established mouse glioblastoma through nicotinylated-liposomes-mediated targeted chemotherapy in combination with dendritic-cell-based genetic immunization. Adv Biosyst 1(1–2):1600009 Saha S, Venu Y, Bhattacharya D, Kompella SD, Madhusudana K, Chakravarty S, Ramakrishna S, Chaudhuri A (2017) Combating established mouse glioblastoma through nicotinylated-liposomes-mediated targeted chemotherapy in combination with dendritic-cell-based genetic immunization. Adv Biosyst 1(1–2):1600009
Metadaten
Titel
Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells
verfasst von
R. Gajendra Reddy
Unis Ahmad Bhat
Sumana Chakravarty
Arvind Kumar
Publikationsdatum
07.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Chemotherapy and Pharmacology / Ausgabe 2/2020
Print ISSN: 0344-5704
Elektronische ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-020-04109-w

Weitere Artikel der Ausgabe 2/2020

Cancer Chemotherapy and Pharmacology 2/2020 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.