Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2018

Open Access 01.12.2018 | Review

Advances in multiple omics of natural-killer/T cell lymphoma

verfasst von: Jie Xiong, Wei-Li Zhao

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2018

Abstract

Natural-killer/T cell lymphoma (NKTCL) represents the most common subtype of extranodal lymphoma with aggressive clinical behavior. Prevalent in Asians and South Americans, the pathogenesis of NKTCL remains to be fully elucidated. Using system biology techniques including genomics, transcriptomics, epigenomics, and metabolomics, novel biomarkers and therapeutic targets have been revealed in NKTCL. Whole-exome sequencing studies identify recurrent somatic gene mutations, involving RNA helicases, tumor suppressors, JAK-STAT pathway molecules, and epigenetic modifiers. Another genome-wide association study reports that single nucleotide polymorphisms mapping to the class II MHC region on chromosome 6 contribute to lymphomagenesis. Alterations of oncogenic signaling pathways janus kinase-signal transducer and activator of transcription (JAK-STAT), nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), WNT, and NOTCH, as well as epigenetic dysregulation of microRNA and long non-coding RNAs, are also frequently observed in NKTCL. As for metabolomic profiling, abnormal amino acids metabolism plays an important role on disease progression of NKTCL. Of note, through targeting multiple omics aberrations, clinical outcome of NKTCL patients has been significantly improved by asparaginase-based regimens, immune checkpoints inhibitors, and histone deacetylation inhibitors. Future investigations will be emphasized on molecular classification of NKTCL using integrated analysis of system biology, so as to optimize targeted therapeutic strategies of NKTCL in the era of precision medicine.
Abkürzungen
AspM
Asparaginase-associated metabolic score
BART
BamHI-A region rightward transcript
BHRF1
BamHI fragment H rightward open reading frame 1
CNV
Copy number variation
CR
Complete remission
EBV
Epstein-Barr virus
JAK-STAT
Janus kinase-signal transducer and activator of transcription
MAPK
Mitogen-activated protein kinase
NF-κB
Nuclear factor-κB
NKTCL
Natural-killer/T cell lymphoma
ORR
Overall response rate
OS
Overall survival
PD-1
Programmed death 1
PD-L1
Programed death ligand 1
PFS
Profression-free survival
PINK
Prognostic index of natural-killer lymphoma
TCR
T cell receptor

Background

Natural-killer/T cell lymphoma (NKTCL) is a highly aggressive subtype of non-Hodgkin’s lymphoma with malignant proliferation of CD56+/cytoCD3+ lymphocytes [1, 2]. Epstein-Barr virus (EBV) is critically involved in NKTCL and evidenced by in situ hybridization for EBV-encoded small RNA [3]. As the most common extranodal lymphoma, NKTCL occurs predominantly in nasal/paranasal area (such as the nasal cavity, nasopharynx, paranasal sinuses, tonsil, Waldeyer ring, and oropharynx), with a geographic prevalence in Asian and South American populations [2]. NK and T cells share a common bi-potential T/NK progenitor [4]. Approximately 40% of NKTCL is identified as T cell-origin, characterized by rearrangements of T cell receptor (TCR) gene and expression of TCR protein [5]. As for other cytogenetic and genetic alterations, deletion of chromosome 6q21, as well as mutations of oncogenes (KRAS, NRAS, FAT4, and CTNNB) and tumor suppressor genes (TP53), are frequently observed in NKTCL [69]. However, the driven changes of NKTCL pathogenesis and their underlying mechanisms remain to be fully elucidated.
System biology, consisting of genomics, transcriptomics, epigenomics, and metabolomics, is a group of hallmark techniques in current cancer research and provides insights into the panorama view of biological processes under malignant progression [10, 11]. These omics methods have been successfully implicated not only to elucidate pathogenesis of human diseases, but also to identify prognostic and therapeutic biomarkers [12, 13]. Here, the application of system biology on identification of multiple omics aberrations and their potential clinical rationales are reviewed in NKTCL.

Genomic aberrations

The development of multiple omics studies on NKTCL are illustrated in Fig. 1. Using whole-exome sequencing and targeted sequencing, recurrent somatic gene mutations are identified in NKTCL, mainly as RNA helicase gene DDX3X, tumor suppressors (TP53, MGA, and BCOR), janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway molecules (JAK3, STAT3, and STAT5B), and epigenetic modifiers (MLL2, ARID1A, EP300, and ASXL3) [9, 14]. Of note, DDX3X mutants exhibit decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells, as well as transcriptional activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Patients with mutations in DDX3X and TP53 have a poor response to anthracycline-based chemotherapy [14]. Functioned as a tumor suppressor, MGA gene inhibits MYC-dependent cell growth and malignant transformation through binding with MAX [15]. Somatic loss-of-function mutations of MGA have been observed in solid tumors and may lead to tumor development [16]. BCOR is also likely to play an important role as a tumor suppressor gene [17]. However, the pathogenic mechanism of MGA and BCOR has not yet been revealed in NKTCL. JAK3-activating mutations are involved in cytokine-independent JAK-STAT signaling pathway activation to enhance NKTCL cell proliferation [18, 19]. STAT3 mutations are associated with STAT signaling pathway activation, and confer high programed death ligand 1 (PD-L1) expression, which may promote tumor immune evasion [20, 21]. Mutations in genes related to epigenetic modification of NKTCL include histone methylation (KMT2D), histone acetylation (EP300), histone deubiquitination (ASXL3), and chromatin remodeling (ARID1A) [22]. A case with extranodal EBV-negative NKTCL is reported to harbor KDM6A mutation, which is located on Xp11.2 and acts as an enzyme specifically demethylating H3K27 [23].
Through genome-wide association study, genetic variants affecting individual risk of NKTCL has been investigated, showing that single nucleotide polymorphisms mapping to the class II MHC region on chromosome 6, with rs9277378 located in HLA-DPB1 is the strongest contributor to lymphomagenesis (odds ratio 2.65) [24]. More recently, a hotspot mutation of ECSIT-V140A has also been identified in NKTCL patients with lymphoma-associated hemophagocytic syndrome and poor prognosis [25].

Copy number variations (CNVs)

Accumulation of genomic imbalances is implicated in hematological malignancies inducing the activation of oncogenes or inactivation of tumor suppressor genes. As revealed by comparative genomic hybridization, 6q21 is frequently deleted in NKTCL, leading to the loss of tumor suppressor genes located in this region, including PRDM1, ATG5, AIM1, FOXO3, and HACE1 [26, 27]. PRDM1 is required for NK-cell maturation and proliferation [28]. Mutation or methylation in PRDM1, ATG5, and AIM1 have been reported in NKTCL cell lines [29], while another study indicates that HACE1 is not directly related to NKTCL pathophysiology [30].
Besides, recurrent CNVs are observed in other regions of chromosomes, comprising of chromosomal losses (on 1p, 17p, and 12q) and gains (on 2q, 13q, and 10q) [31]. Involved chromosomal fragments may include candidate genes related to malignant transformation and invasion (S100A16, LAMB1, LAMC1, COL1A2, and CTSB), cell-cycle progression (CCND3), JAK-STAT (AKT3, IL6R, and CCL2), and NF-κB (PRKCQ and TNFRSF21) signaling pathways [32]. More recently, other molecular clusters have been proposed, such as loss of 14q11.2 (TCRA loci), gain of 1q32.1-q32.3, and loss of Xp22.33 [33].

Transcriptional profiling

Based on gene expression profiling, integrations of JAK-STAT, NF-κB, and AKT signaling pathways contribute to genotoxic stress, angiogenesis, immunosuppression, and disease progression of NKTCL, as compared to normal NK cells [32, 34]. Activation of WNT and NOTCH signaling pathways are also enriched in NK-cell malignancies [35]. In according with CNV findings, downregulation of tumor suppressor genes in 6q21 (PRDM1, ATG5, AIM1) are confirmed by microarray analysis [27, 32]. As for individual genes, it is noteworthy that MYC induces upregulation of EZH2 and RUNX3, both of which exert cascade effect of transcriptional activation during lymphomagenesis [36, 37]. Using RNA sequencing technology, overexpression of KIR2DL4 is reported in malignant NK cells [38]. KIR2DL4 mediates NK-cell activation via inducing proliferation and survival pathways such as NF-κB and AKT, which may contribute to NKTCL pathogenesis [38].

Epigenetic signatures

In addition to mutations in epigenetic modifiers, differential expression of miRNAs plays a pathogenic role in NKTCL, through targeting cell-cycle-related genes, P53 and MAPK signaling pathways [39, 40]. Loss of miR-26 and miR-101 contribute to the overexpression of EZH2, while upregulation of miR-223 downregulates PRDM1 [36, 41]. EBV-encoded miRNAs have also been detected, including miRs-BART 1 to 22 of BamHI-A region rightward transcript (BART) family, as well as miRs-BHRF1-1, miRs-BHRF1-2, and miRs-BHRF1-3 of the BamHI fragment H rightward open reading frame 1 (BHRF1) family [42, 43]. Viral miRNAs are relatively less present in NKTCL than in nasopharyngeal carcinoma (2.3% of the total miRNA reads vs 5–19% in nasopharyngeal carcinoma) with unknown function [42, 44]. Meanwhile, NKTCL-associated dysregulated long non-coding RNAs have been identified, such as SNHG5, ZFAS1, and MIR155HG [45]. Among them, upregulation of ZFAS1 is implicated in stabilization of TP53, alterations of apoptosis and cell cycle, and activation of NF-κB signaling, while MIR155HG is downregulated by PRDM1 in NKTCL [45].
Promoter region hypermethylation has been investigated by global methylation assays, locus-specific validation of methylation, and methylation-specific polymerase chain reaction, demonstrating increased methylation and decreased gene expression with pathological and clinical significance, including PRDM1, ATG5, AIM1, BCL2L11, DAPK1, TET2, PTPN6, SOCS6, PTPRK, and ASNS [27, 46, 47]. Functionally, inactivation of TET2 may contribute to hypermethylation of global promoters in NKTCL [46]. PTPN6, SOCS6, and PTPRK negatively regulate JAK-STAT, suggestive an alternative mechanism responsible for activation of JAK-STAT signaling pathway [4649].

Metabolomics profiling

Serum metabolomic profile of NKTCL patients is distinct from that of healthy volunteers [50]. Briefly, 115 significantly altered serum metabolites are identified, predominantly involving in pathways of amino acid metabolism [50]. As depicted by alanine, aspartate, and glutamate metabolism pathway in KEGG (Kyoto Encyclopedia of Genes and Genomes), nine of them are asparaginase-associated metabolites (alanine, aspartic acid, malic acid, ornithine, glutamate, glutamine, histidine, pantothenic acid, and succinic acid) and differently expressed in patients with good response to asparaginase, suggesting the reliance of malignant NK cells on extracellular amino acids. Based on serum metabolomics, our group has established a prognostic asparaginase-associated metabolic (AspM) score, including alanine, aspartate, glutamate, and succinic acid [50]. As a prognostic score independent of International prognostic index, as well as prognostic index of natural-killer lymphoma (PINK) or PINK in combination with peripheral blood EBV DNA, AspM score is easily attainable from peripheral blood and efficiently predicts response to asparaginase-based regimens [50].

Therapeutic strategies targeting multiple omics alterations

Schematic description of NKTCL pathogenesis and targeted therapeutic strategies are shown in Fig. 2. With the understanding of multiple omics alterations, clinical outcome of NKTCL has been significantly improved by new therapeutic strategies.
Different from metabolomic fingerprints of T and B cell lymphoma, NKTCL is characterized by dysregulated amino acid metabolism, mainly as alanine, aspartate, and glutamate metabolism [50]. Asparaginase and methotrexate are the most commonly used anti-metabolite agents, functioning through hydrolyzing extracellular asparagine or targeting folate, pyrimidine, and purine metabolism, respectively [50, 51]. For localized NKTCL, methotrexate, etoposide, dexamethasone, and peg-asparaginase (MESA) sandwiched with radiotherapy achieved complete remission (CR) rate of 89.5% in 38 patients. The 2-year progression-free survival (PFS) and overall survival (OS) rate are 89.1% and 92.0% [50]. These data highlight the role of targeting metabolic vulnerability in NKTCL.
Increased expression of cell cycle-related genes has been reported in NKTCL [39]. Platinum, gemcitabine, and etoposide are cell cycle-specific DNA damaging agents [5254], which are prevalently used in NKTCL chemotherapy. For advanced or relapsed/refractory NKTCL, CR rate of P-GEMOX (peg-asparaginase, gemcitabine, and oxaliplatin) is 51.4% of 35 patients, with 2-year PFS and OS rate of 38.6% and 64.7% [55]. In a randomized controlled, multicenter, and open-label clinical trial, DDGP (dexamethasone, cisplatin, gemcitabine, and peg-asparaginase) results in a CR rate of 71%, as well as significant improvement in 2-year PFS and OS rate to 86% and 74% [56]. Therefore, inhibition of cell-cycle progression is another key target in treating NKTCL [57].
Programmed death ligand 1 (PD-L1) is frequently upregulated in NKTCL [33]. Moreover, TP53 mutation, activation of STAT3 signaling pathway, and EBV-driven latent membrane protein-1 are all related to PD-L1 overexpression [20, 58, 59]. Clinically, patients with NKTCL relapsed or refractory from l-asparaginase-based regimens and allogeneic hematopoietic stem-cell transplantation respond well to the anti-programmed death-1 (PD-1) antibody pembrolizumab, with overall response rate (ORR) as 100% [60]. Favorable responses to pembrolizumab are also observed in another independent study with ORR as 57% (4 out of 7 relapsed/refractory NKTCL) [61], indicating that PD-1 blockade is an important immunotherapy for NKTCL resistant to anti-metabolic and cytotoxic agents.
Histone deacetylase inhibitors serve as promising epigenetic agents, and phase II trials have been carried out in T cell lymphoma (including NKTCL), showing that 1 out of 2 enrolled NKTCL cases responds to Belinostat, while 3 out of 16 cases respond to Chidamide [62, 63]. Since promoter region hypermethylation is present in NKTCL, in vitro studies indicate that reversal of methylation by decitabine induces expression of key candidate genes involved in tumor suppressor (PRDM1), pro-apoptosis (BIM and SAPK), JAK-STAT pathway (SOCS6, ZFHX3, and PTPN6), and cell growth inhibition (CD300A) etc., leading to increased NK-cell death [27, 46].
ECSIT-V140A is associated with activation of NF-κB pathway, transcription, and secretion of pro-inflammatory cytokines. The immunomodulatory agent thalidomide prevents NF-κB from binding to the promoters of its target genes (including TNF and IFNG), and combined treatment of thalidomide and dexamethasone extends disease-free survival of two NKTCL patients with hemophagocytic syndrome who express ECSIT-V140A for longer than 3 years [25]. Lenalidomide has also successfully been used in a patient with relapsed NKTCL after autologous hematopoietic stem-cell transplantation [64].
Novel bio-agents are currently under pre-clinical studies. High-throughput drug sensitivity and resistance testing identify JAK inhibitor ruxolitinib to be highly effective across NKTCL cell lines [65]. Therapeutic effect of a novel selective JAK3 inhibitor PRN371 has been recently confirmed in xenograft model harboring JAK3 activating mutation [66]. As mechanism of action, JAK3 inhibitors inhibit NKTCL cell growth in an EZH2 phosphorylation-dependent manner, which functions as a transcriptional activator of NKTCL. STAT3 inhibitor tofacitinib is active against STAT3-mutant NKTCL cell lines [18], while JAK1/2 inhibitor partially against STAT3 and STAT5B mutations [21]. STAT3 activation confers PD-L1 overexpression, which can be downregulated by STAT3 inhibitors, alone or combined with PD-1/PD-L1 antibodies [20]. Combined treatment of LEE011 and ruxolitinib synergistically inhibit NKTCL cell growth, suggesting that targeting of both CDK4/6 and JAK1/2 are promising treatment alternatives for NKTCL [67].

Perspectives

Multiple omics analysis reveals genetic, epigenetic, transcriptomic and metabolic aberrations, which are not only associated with disease progression, but also response to clinical management. In the future, integration of system biology techniques should be further carried out to classify disease into subtypes of distinct molecular fingerprints, paving way for the implication of mechanism-based targeted therapy in NKTCL.

Acknowledgements

Not applicable.

Funding

This study was supported, in part, by research funding from the National Natural Science Foundation of China (81520108003, 81830007, and 81670716), the National Key Research and Development Program of China (2016YFC0902800), Chang Jiang Scholars Program, the Shanghai Commission of Science and Technology (16JC1405800), Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research Plan of SHDC (16CR2017A), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Collaborative Innovation Center of Systems Biomedicine and the Samuel Waxman Cancer Research Foundation.

Availability of data and materials

Not applicable.

Authors’ information

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
3.
Zurück zum Zitat Chan JK, Yip TT, Tsang WY, Ng CS, Lau WH, Poon YF, et al. Detection of Epstein-Barr viral RNA in malignant lymphomas of the upper aerodigestive tract. Am J Surg Pathol. 1994;18(9):938–46.CrossRefPubMed Chan JK, Yip TT, Tsang WY, Ng CS, Lau WH, Poon YF, et al. Detection of Epstein-Barr viral RNA in malignant lymphomas of the upper aerodigestive tract. Am J Surg Pathol. 1994;18(9):938–46.CrossRefPubMed
5.
Zurück zum Zitat Hong M, Lee T, Young Kang S, Kim SJ, Kim W, Ko YH. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: lineage does not predict clinical behavior. Mod Pathol. 2016;29(5):430–43.CrossRefPubMed Hong M, Lee T, Young Kang S, Kim SJ, Kim W, Ko YH. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: lineage does not predict clinical behavior. Mod Pathol. 2016;29(5):430–43.CrossRefPubMed
6.
Zurück zum Zitat Takahara M, Kishibe K, Bandoh N, Nonaka S, Harabuchi Y. P53, N- and K-Ras, and beta-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido, Japan. Hum Pathol. 2004;35(1):86–95.CrossRefPubMed Takahara M, Kishibe K, Bandoh N, Nonaka S, Harabuchi Y. P53, N- and K-Ras, and beta-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido, Japan. Hum Pathol. 2004;35(1):86–95.CrossRefPubMed
7.
Zurück zum Zitat Hongyo T, Hoshida Y, Nakatsuka S, Syaifudin M, Kojya S, Yang WI, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol Rep. 2005;13(2):265–71.PubMed Hongyo T, Hoshida Y, Nakatsuka S, Syaifudin M, Kojya S, Yang WI, et al. p53, K-ras, c-kit and beta-catenin gene mutations in sinonasal NK/T-cell lymphoma in Korea and Japan. Oncol Rep. 2005;13(2):265–71.PubMed
8.
Zurück zum Zitat Hoshida Y, Hongyo T, Jia X, He Y, Hasui K, Dong Z, et al. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in northeast district of China. Cancer Sci. 2003;94(3):297–301.CrossRefPubMed Hoshida Y, Hongyo T, Jia X, He Y, Hasui K, Dong Z, et al. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in northeast district of China. Cancer Sci. 2003;94(3):297–301.CrossRefPubMed
9.
Zurück zum Zitat Dobashi A, Tsuyama N, Asaka R, Togashi Y, Ueda K, Sakata S, et al. Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosomes Cancer. 2016;55(5):460–71.CrossRefPubMed Dobashi A, Tsuyama N, Asaka R, Togashi Y, Ueda K, Sakata S, et al. Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosomes Cancer. 2016;55(5):460–71.CrossRefPubMed
10.
Zurück zum Zitat Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol. 2016;54:92–103.CrossRefPubMed Gallagher IJ, Jacobi C, Tardif N, Rooyackers O, Fearon K. Omics/systems biology and cancer cachexia. Semin Cell Dev Biol. 2016;54:92–103.CrossRefPubMed
12.
Zurück zum Zitat Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol. 2018;244(5):525–37.CrossRefPubMed Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ. Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol. 2018;244(5):525–37.CrossRefPubMed
13.
Zurück zum Zitat Blucher AS, Choonoo G, Kulesz-Martin M, Wu G, McWeeney SK. Evidence-based precision oncology with the cancer targetome. Trends Pharmacol Sci. 2017;38(12):1085–99.CrossRefPubMedPubMedCentral Blucher AS, Choonoo G, Kulesz-Martin M, Wu G, McWeeney SK. Evidence-based precision oncology with the cancer targetome. Trends Pharmacol Sci. 2017;38(12):1085–99.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–6.CrossRefPubMed Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47(9):1061–6.CrossRefPubMed
15.
Zurück zum Zitat Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science. 2002;296(5570):1132–6.CrossRefPubMed Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science. 2002;296(5570):1132–6.CrossRefPubMed
16.
Zurück zum Zitat Cancer Genome Atlas Research. N: comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef Cancer Genome Atlas Research. N: comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef
17.
Zurück zum Zitat Tanaka T, Nakajima-Takagi Y, Aoyama K, Tara S, Oshima M, Saraya A, et al. Internal deletion of BCOR reveals a tumor suppressor function for BCOR in T lymphocyte malignancies. J Exp Med. 2017;214(10):2901–13.CrossRefPubMedPubMedCentral Tanaka T, Nakajima-Takagi Y, Aoyama K, Tara S, Oshima M, Saraya A, et al. Internal deletion of BCOR reveals a tumor suppressor function for BCOR in T lymphocyte malignancies. J Exp Med. 2017;214(10):2901–13.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Sim SH, Kim S, Kim TM, Jeon YK, Nam SJ, Ahn YO, et al. Novel JAK3-activating mutations in extranodal NK/T-cell lymphoma, nasal type. Am J Pathol. 2017;187(5):980–6.CrossRefPubMed Sim SH, Kim S, Kim TM, Jeon YK, Nam SJ, Ahn YO, et al. Novel JAK3-activating mutations in extranodal NK/T-cell lymphoma, nasal type. Am J Pathol. 2017;187(5):980–6.CrossRefPubMed
19.
Zurück zum Zitat Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.CrossRefPubMed Koo GC, Tan SY, Tang T, Poon SL, Allen GE, Tan L, et al. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2012;2(7):591–7.CrossRefPubMed
20.
Zurück zum Zitat Song TL, Nairismagi ML, Laurensia Y, Lim JQ, Tan J, Li ZM, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132(11):1146–58.CrossRefPubMedPubMedCentral Song TL, Nairismagi ML, Laurensia Y, Lim JQ, Tan J, Li ZM, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132(11):1146–58.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.CrossRefPubMed Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.CrossRefPubMed
22.
Zurück zum Zitat Choi S, Go JH, Kim EK, Lee H, Lee WM, Cho CS, et al. Mutational analysis of extranodal NK/T-cell lymphoma using targeted sequencing with a comprehensive cancer panel. Genomics Inform. 2016;14(3):78–84.CrossRefPubMedPubMedCentral Choi S, Go JH, Kim EK, Lee H, Lee WM, Cho CS, et al. Mutational analysis of extranodal NK/T-cell lymphoma using targeted sequencing with a comprehensive cancer panel. Genomics Inform. 2016;14(3):78–84.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Tsuyama N, Asaka R, Dobashi A, Baba S, Mishima Y, Ueda K, et al. Epstein-Barr virus-negative extranodal “true” natural killer-cell lymphoma harbouring a KDM6A mutation. Hematol Oncol. 2018;36(1):328–35.CrossRefPubMed Tsuyama N, Asaka R, Dobashi A, Baba S, Mishima Y, Ueda K, et al. Epstein-Barr virus-negative extranodal “true” natural killer-cell lymphoma harbouring a KDM6A mutation. Hematol Oncol. 2018;36(1):328–35.CrossRefPubMed
24.
Zurück zum Zitat Li Z, Xia Y, Feng LN, Chen JR, Li HM, Cui J, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17(9):1240–7.CrossRefPubMedPubMedCentral Li Z, Xia Y, Feng LN, Chen JR, Li HM, Cui J, et al. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol. 2016;17(9):1240–7.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Wen H, Ma H, Cai Q, Lin S, Lei X, He B, et al. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med. 2018;24(2):154–64.CrossRefPubMed Wen H, Ma H, Cai Q, Lin S, Lei X, He B, et al. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med. 2018;24(2):154–64.CrossRefPubMed
26.
Zurück zum Zitat Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood. 2011;118(12):3195–204.CrossRefPubMed Karube K, Nakagawa M, Tsuzuki S, Takeuchi I, Honma K, Nakashima Y, et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood. 2011;118(12):3195–204.CrossRefPubMed
27.
Zurück zum Zitat Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.CrossRefPubMed Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.CrossRefPubMed
28.
Zurück zum Zitat Kallies A, Carotta S, Huntington ND, Bernard NJ, Tarlinton DM, Smyth MJ, et al. A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood. 2011;117(6):1869–79.CrossRefPubMed Kallies A, Carotta S, Huntington ND, Bernard NJ, Tarlinton DM, Smyth MJ, et al. A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood. 2011;117(6):1869–79.CrossRefPubMed
29.
Zurück zum Zitat Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol. 2013;26(1):57–74.CrossRefPubMed Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol. 2013;26(1):57–74.CrossRefPubMed
30.
Zurück zum Zitat Sako N, Dessirier V, Bagot M, Bensussan A, Schmitt C. HACE1, a potential tumor suppressor gene on 6q21, is not involved in extranodal natural killer/T-cell lymphoma pathophysiology. Am J Pathol. 2014;184(11):2899–907.CrossRefPubMed Sako N, Dessirier V, Bagot M, Bensussan A, Schmitt C. HACE1, a potential tumor suppressor gene on 6q21, is not involved in extranodal natural killer/T-cell lymphoma pathophysiology. Am J Pathol. 2014;184(11):2899–907.CrossRefPubMed
31.
Zurück zum Zitat Ko YH, Choi KE, Han JH, Kim JM, Ree HJ. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46(2):85–91.CrossRefPubMed Ko YH, Choi KE, Han JH, Kim JM, Ree HJ. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46(2):85–91.CrossRefPubMed
32.
Zurück zum Zitat Huang Y, de Reynies A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.CrossRefPubMedPubMedCentral Huang Y, de Reynies A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Ng SB, Chung TH, Kato S, Nakamura S, Takahashi E, Ko YH, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica. 2018;103(2):278–87.CrossRefPubMedPubMedCentral Ng SB, Chung TH, Kato S, Nakamura S, Takahashi E, Ko YH, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica. 2018;103(2):278–87.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Ng SB, Selvarajan V, Huang G, Zhou J, Feldman AL, Law M, et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol. 2011;223(4):496–510.CrossRefPubMed Ng SB, Selvarajan V, Huang G, Zhou J, Feldman AL, Law M, et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol. 2011;223(4):496–510.CrossRefPubMed
35.
Zurück zum Zitat Iqbal J, Weisenburger DD, Chowdhury A, Tsai MY, Srivastava G, Greiner TC, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25(2):348–58.CrossRefPubMed Iqbal J, Weisenburger DD, Chowdhury A, Tsai MY, Srivastava G, Greiner TC, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25(2):348–58.CrossRefPubMed
36.
Zurück zum Zitat Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013;121(22):4512–20.CrossRefPubMed Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013;121(22):4512–20.CrossRefPubMed
37.
Zurück zum Zitat Selvarajan V, Osato M, Nah GSS, Yan J, Chung TH, Voon DC, et al. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia. 2017;31(10):2219–27.CrossRefPubMedPubMedCentral Selvarajan V, Osato M, Nah GSS, Yan J, Chung TH, Voon DC, et al. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia. 2017;31(10):2219–27.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kucuk C, Hu X, Gong Q, Jiang B, Cornish A, Gaulard P, et al. Diagnostic and biological significance of KIR expression profile determined by RNA-Seq in natural killer/T-cell lymphoma. Am J Pathol. 2016;186(6):1435–41.CrossRefPubMedPubMedCentral Kucuk C, Hu X, Gong Q, Jiang B, Cornish A, Gaulard P, et al. Diagnostic and biological significance of KIR expression profile determined by RNA-Seq in natural killer/T-cell lymphoma. Am J Pathol. 2016;186(6):1435–41.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Ng SB, Yan J, Huang G, Selvarajan V, Tay JL, Lin B, et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood. 2011;118(18):4919–29.CrossRefPubMed Ng SB, Yan J, Huang G, Selvarajan V, Tay JL, Lin B, et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood. 2011;118(18):4919–29.CrossRefPubMed
40.
Zurück zum Zitat Zhang X, Ji W, Huang R, Li L, Wang X, Li L, et al. MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma. Oncotarget. 2016;7(33):53808–19.CrossRefPubMedPubMedCentral Zhang X, Ji W, Huang R, Li L, Wang X, Li L, et al. MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma. Oncotarget. 2016;7(33):53808–19.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Liang L, Nong L, Zhang S, Zhao J, Ti H, Dong Y, et al. The downregulation of PRDM1/Blimp-1 is associated with aberrant expression of miR-223 in extranodal NK/T-cell lymphoma, nasal type. J Exp Clin Cancer Res. 2014;33:7.CrossRefPubMedPubMedCentral Liang L, Nong L, Zhang S, Zhao J, Ti H, Dong Y, et al. The downregulation of PRDM1/Blimp-1 is associated with aberrant expression of miR-223 in extranodal NK/T-cell lymphoma, nasal type. J Exp Clin Cancer Res. 2014;33:7.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T, et al. MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One. 2012;7(8):e42193.CrossRefPubMedPubMedCentral Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T, et al. MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One. 2012;7(8):e42193.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Kawano Y, Iwata S, Kawada J, Gotoh K, Suzuki M, Torii Y, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis. 2013;208(5):771–9.CrossRefPubMed Kawano Y, Iwata S, Kawada J, Gotoh K, Suzuki M, Torii Y, et al. Plasma viral microRNA profiles reveal potential biomarkers for chronic active Epstein-Barr virus infection. J Infect Dis. 2013;208(5):771–9.CrossRefPubMed
44.
Zurück zum Zitat Zhu JY, Pfuhl T, Motsch N, Barth S, Nicholls J, Grasser F, et al. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol. 2009;83(7):3333–41.CrossRefPubMedPubMedCentral Zhu JY, Pfuhl T, Motsch N, Barth S, Nicholls J, Grasser F, et al. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol. 2009;83(7):3333–41.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Kucuk C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol. 2017;39(5):1010428317701648.CrossRefPubMed Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Kucuk C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol. 2017;39(5):1010428317701648.CrossRefPubMed
46.
Zurück zum Zitat Kucuk C, Hu X, Jiang B, Klinkebiel D, Geng H, Gong Q, et al. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res. 2015;21(7):1699–711.CrossRefPubMedPubMedCentral Kucuk C, Hu X, Jiang B, Klinkebiel D, Geng H, Gong Q, et al. Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res. 2015;21(7):1699–711.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Chen YW, Guo T, Shen L, Wong KY, Tao Q, Choi WW, et al. Receptor-type tyrosine-protein phosphatase kappa directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood. 2015;125(10):1589–600.CrossRefPubMed Chen YW, Guo T, Shen L, Wong KY, Tao Q, Choi WW, et al. Receptor-type tyrosine-protein phosphatase kappa directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood. 2015;125(10):1589–600.CrossRefPubMed
48.
Zurück zum Zitat Hwang MN, Min CH, Kim HS, Lee H, Yoon KA, Park SY, et al. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels. Biochem Biophys Res Commun. 2007;360(2):333–8.CrossRefPubMed Hwang MN, Min CH, Kim HS, Lee H, Yoon KA, Park SY, et al. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels. Biochem Biophys Res Commun. 2007;360(2):333–8.CrossRefPubMed
49.
Zurück zum Zitat Guo Y, Arakawa F, Miyoshi H, Niino D, Kawano R, Ohshima K. Activated janus kinase 3 expression not by activating mutations identified in natural killer/T-cell lymphoma. Pathol Int. 2014;64(6):263–6.CrossRefPubMed Guo Y, Arakawa F, Miyoshi H, Niino D, Kawano R, Ohshima K. Activated janus kinase 3 expression not by activating mutations identified in natural killer/T-cell lymphoma. Pathol Int. 2014;64(6):263–6.CrossRefPubMed
50.
Zurück zum Zitat Xu PP, Xiong J, Cheng S, Zhao X, Wang CF, Cai G, et al. A phase II study of methotrexate, etoposide, dexamethasone and pegaspargase sandwiched with radiotherapy in the treatment of newly diagnosed, stage IE to IIE extranodal natural-killer/T-cell lymphoma, nasal-type. EBioMedicine. 2017;25:41–9.CrossRefPubMedPubMedCentral Xu PP, Xiong J, Cheng S, Zhao X, Wang CF, Cai G, et al. A phase II study of methotrexate, etoposide, dexamethasone and pegaspargase sandwiched with radiotherapy in the treatment of newly diagnosed, stage IE to IIE extranodal natural-killer/T-cell lymphoma, nasal-type. EBioMedicine. 2017;25:41–9.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Campalani E, Arenas M, Marinaki AM, Lewis CM, Barker JN, Smith CH. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127(8):1860–7.CrossRefPubMed Campalani E, Arenas M, Marinaki AM, Lewis CM, Barker JN, Smith CH. Polymorphisms in folate, pyrimidine, and purine metabolism are associated with efficacy and toxicity of methotrexate in psoriasis. J Invest Dermatol. 2007;127(8):1860–7.CrossRefPubMed
52.
Zurück zum Zitat Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20.CrossRefPubMed Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20.CrossRefPubMed
53.
Zurück zum Zitat Luzhin AV, Velichko AK, Razin SV, Kantidze OL. Automated analysis of cell cycle phase-specific DNA damage reveals phase-specific differences in cell sensitivity to etoposide. J Cell Biochem. 2016;117(10):2209–14.CrossRefPubMed Luzhin AV, Velichko AK, Razin SV, Kantidze OL. Automated analysis of cell cycle phase-specific DNA damage reveals phase-specific differences in cell sensitivity to etoposide. J Cell Biochem. 2016;117(10):2209–14.CrossRefPubMed
54.
Zurück zum Zitat Jackson RC, Di Veroli GY, Koh SB, Goldlust I, Richards FM, Jodrell DI. Modelling of the cancer cell cycle as a tool for rational drug development: a systems pharmacology approach to cyclotherapy. PLoS Comput Biol. 2017;13(5):e1005529.CrossRefPubMedPubMedCentral Jackson RC, Di Veroli GY, Koh SB, Goldlust I, Richards FM, Jodrell DI. Modelling of the cancer cell cycle as a tool for rational drug development: a systems pharmacology approach to cyclotherapy. PLoS Comput Biol. 2017;13(5):e1005529.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Wang JH, Wang L, Liu CC, Xia ZJ, Huang HQ, Lin TY, et al. Efficacy of combined gemcitabine, oxaliplatin and pegaspargase (P-gemox regimen) in patients with newly diagnosed advanced-stage or relapsed/refractory extranodal NK/T-cell lymphoma. Oncotarget. 2016;7(20):29092–101.PubMedPubMedCentral Wang JH, Wang L, Liu CC, Xia ZJ, Huang HQ, Lin TY, et al. Efficacy of combined gemcitabine, oxaliplatin and pegaspargase (P-gemox regimen) in patients with newly diagnosed advanced-stage or relapsed/refractory extranodal NK/T-cell lymphoma. Oncotarget. 2016;7(20):29092–101.PubMedPubMedCentral
56.
Zurück zum Zitat Li X, Cui Y, Sun Z, Zhang L, Li L, Wang X, et al. DDGP versus SMILE in newly diagnosed advanced natural killer/T-cell lymphoma: a randomized controlled, multicenter, open-label study in China. Clin Cancer Res. 2016;22(21):5223–8.CrossRefPubMed Li X, Cui Y, Sun Z, Zhang L, Li L, Wang X, et al. DDGP versus SMILE in newly diagnosed advanced natural killer/T-cell lymphoma: a randomized controlled, multicenter, open-label study in China. Clin Cancer Res. 2016;22(21):5223–8.CrossRefPubMed
58.
Zurück zum Zitat Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24(22):5710-23.CrossRefPubMed Biton J, Mansuet-Lupo A, Pecuchet N, Alifano M, Ouakrim H, Arrondeau J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24(22):5710-23.CrossRefPubMed
59.
Zurück zum Zitat Bi XW, Wang H, Zhang WW, Wang JH, Liu WJ, Xia ZJ, et al. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol. 2016;9(1):109.CrossRefPubMedPubMedCentral Bi XW, Wang H, Zhang WW, Wang JH, Liu WJ, Xia ZJ, et al. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol. 2016;9(1):109.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42.CrossRefPubMed Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42.CrossRefPubMed
61.
Zurück zum Zitat Li X, Cheng Y, Zhang M, Yan J, Li L, Fu X, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018;11(1):15.CrossRefPubMedPubMedCentral Li X, Cheng Y, Zhang M, Yan J, Li L, Fu X, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018;11(1):15.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9.CrossRefPubMedPubMedCentral O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–9.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26(8):1766–71.CrossRefPubMed Shi Y, Dong M, Hong X, Zhang W, Feng J, Zhu J, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26(8):1766–71.CrossRefPubMed
64.
Zurück zum Zitat Wang L, Wang ZH, Chen XQ, Wang KF, Huang HQ, Xia ZJ. First-line combination of GELOX followed by radiation therapy for patients with stage IE/IIE ENKTL: an updated analysis with long-term follow-up. Oncol Lett. 2015;10(2):1036–40.CrossRefPubMedPubMedCentral Wang L, Wang ZH, Chen XQ, Wang KF, Huang HQ, Xia ZJ. First-line combination of GELOX followed by radiation therapy for patients with stage IE/IIE ENKTL: an updated analysis with long-term follow-up. Oncol Lett. 2015;10(2):1036–40.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S, et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun. 2018;9(1):1567.CrossRefPubMedPubMedCentral Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S, et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun. 2018;9(1):1567.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Nairismagi M, Gerritsen ME, Li ZM, Wijaya GC, Chia BKH, Laurensia Y, et al. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia. 2018;32(5):1147–56.CrossRefPubMedCentral Nairismagi M, Gerritsen ME, Li ZM, Wijaya GC, Chia BKH, Laurensia Y, et al. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia. 2018;32(5):1147–56.CrossRefPubMedCentral
67.
Zurück zum Zitat Hee YT, Yan J, Nizetic D, Chng WJ. LEE011 and ruxolitinib: a synergistic drug combination for natural killer/T-cell lymphoma (NKTCL). Oncotarget. 2018;9(61):31832–41.CrossRefPubMedPubMedCentral Hee YT, Yan J, Nizetic D, Chng WJ. LEE011 and ruxolitinib: a synergistic drug combination for natural killer/T-cell lymphoma (NKTCL). Oncotarget. 2018;9(61):31832–41.CrossRefPubMedPubMedCentral
Metadaten
Titel
Advances in multiple omics of natural-killer/T cell lymphoma
verfasst von
Jie Xiong
Wei-Li Zhao
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2018
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0678-1

Weitere Artikel der Ausgabe 1/2018

Journal of Hematology & Oncology 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.