Skip to main content
Erschienen in:

31.01.2022 | Minireview

Advances in tissue engineering technology for kidney regeneration and construction

verfasst von: Yusuke Nishimura, Takenori Aida, Yosuke Taguchi

Erschienen in: Journal of Artificial Organs | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Tissue engineering is a highly interdisciplinary research field aiming at repairing, replacing, and regenerating the defective tissues. Over several decades of research, a variety of methods have been developed. The technical methods can be categorized into scaffold-based and scaffold-free strategies. In this mini review, the discussion will be focused on the technical methods of tissue engineering for kidney regeneration and construction.
Literatur
1.
Zurück zum Zitat Fukui A, Yokoo T, Nangaku M, Kashihara N. New measures against chronic kidney diseases in Japan since 2018. Clin Exp Nephrol. 2019;23:1263–71.CrossRef Fukui A, Yokoo T, Nangaku M, Kashihara N. New measures against chronic kidney diseases in Japan since 2018. Clin Exp Nephrol. 2019;23:1263–71.CrossRef
2.
Zurück zum Zitat Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019;96:1048–50.CrossRef Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019;96:1048–50.CrossRef
4.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRef Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRef
5.
Zurück zum Zitat Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.CrossRef Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.CrossRef
6.
Zurück zum Zitat Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater. 2019;95:328–36.CrossRef Huling J, Min SI, Kim DS, Ko IK, Atala A, Yoo JJ. Kidney regeneration with biomimetic vascular scaffolds based on vascular corrosion casts. Acta Biomater. 2019;95:328–36.CrossRef
7.
Zurück zum Zitat Kim YA, Chun SY, Park SB, Kang E, Koh WG, Kwon TG, Han DK, Joung YK. Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomater Sci. 2020;8:5427–40.CrossRef Kim YA, Chun SY, Park SB, Kang E, Koh WG, Kwon TG, Han DK, Joung YK. Scaffold-supported extracellular matrices preserved by magnesium hydroxide nanoparticles for renal tissue regeneration. Biomater Sci. 2020;8:5427–40.CrossRef
8.
Zurück zum Zitat Ko KW, Park SY, Lee EH, Yoo YI, Kim JY, Kwon TG, Han DK. Integrated bioactive scaffold with polydeoxyribonucleotide and stem-cell-derived extracellular vesicles for kidney regeneration. ACS Nano. 2021;15:7575–85.CrossRef Ko KW, Park SY, Lee EH, Yoo YI, Kim JY, Kwon TG, Han DK. Integrated bioactive scaffold with polydeoxyribonucleotide and stem-cell-derived extracellular vesicles for kidney regeneration. ACS Nano. 2021;15:7575–85.CrossRef
9.
Zurück zum Zitat Unbekandt M, Davies JA. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010;77:407–16.CrossRef Unbekandt M, Davies JA. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 2010;77:407–16.CrossRef
10.
Zurück zum Zitat Xinaris C, Benedetti V, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23:1857–68.CrossRef Xinaris C, Benedetti V, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23:1857–68.CrossRef
11.
Zurück zum Zitat Oka M, Sekiya S, Sakiyama R, Shimizu T, Nitta K. Hepatocyte growth factor-secreting mesothelial cell sheets suppress progressive fibrosis in a rat model of CKD. J Am Soc Nephrol. 2019;30:261–76.CrossRef Oka M, Sekiya S, Sakiyama R, Shimizu T, Nitta K. Hepatocyte growth factor-secreting mesothelial cell sheets suppress progressive fibrosis in a rat model of CKD. J Am Soc Nephrol. 2019;30:261–76.CrossRef
12.
Zurück zum Zitat Nishimura Y, Wang PC. Possibility of culturing the early developing kidney cells by utilizing simulated microgravity environment. Biochem Biophys Res Commun. 2021;573:9–12.CrossRef Nishimura Y, Wang PC. Possibility of culturing the early developing kidney cells by utilizing simulated microgravity environment. Biochem Biophys Res Commun. 2021;573:9–12.CrossRef
13.
Zurück zum Zitat Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.CrossRef Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.CrossRef
14.
Zurück zum Zitat Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33:1193–200.CrossRef Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33:1193–200.CrossRef
15.
Zurück zum Zitat Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.CrossRef Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.CrossRef
16.
Zurück zum Zitat Takasato M, Erii PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa C, Lopes SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.CrossRef Takasato M, Erii PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, de Sousa C, Lopes SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.CrossRef
17.
Zurück zum Zitat Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, Okano HJ, Yokoo T. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat Commun. 2017;8:1719.CrossRef Yamanaka S, Tajiri S, Fujimoto T, Matsumoto K, Fukunaga S, Kim BS, Okano HJ, Yokoo T. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system. Nat Commun. 2017;8:1719.CrossRef
18.
Metadaten
Titel
Advances in tissue engineering technology for kidney regeneration and construction
verfasst von
Yusuke Nishimura
Takenori Aida
Yosuke Taguchi
Publikationsdatum
31.01.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Artificial Organs / Ausgabe 3/2022
Print ISSN: 1434-7229
Elektronische ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-022-01315-6

Neu im Fachgebiet Chirurgie

Ab sofort gelten die neuen Verordnungsausnahmen für Lipidsenker

Freie Fahrt für Lipidsenker? Das nicht, doch mit niedrigerem Schwellenwert fürs Infarktrisiko und neuen Indikationen hat der G-BA die Verordnungs-Handbremse ein gutes Stück weit gelockert.

Appendizitis und Darminfarkt durch Blinddarm-Lipom

Eigentlich sind Lipome recht harmlos. Im Zäkum können sie jedoch erhebliche Komplikationen mit Darminfarkt und Appendizitis verursachen.

Gluteuslappen nach Rektumkarzinom-Op. schützt vor Abszessen

Die Wunddeckung mit einem autologen Rotationslappen nach Entfernung eines Rektumkarzinoms konnte in einer randomisierten Studie gegenüber dem primären Wundverschluss vor allem in einer Hinsicht punkten: Sie führte deutlich seltener zu präsakralen Abszessen.

Webinar

MedTalk Leitlinie KOMPAKT: S3-Leitline zu peripheren Nervenverletzungen

  • Webinar | 10.02.2025 | 13:00

Über den Weg zur finalen Fassung der S3-Leitlinie "Versorgung peripherer Nervenverletzungen" spricht Prof. Dr. Leila Harhaus-Wähner im MedTalk Leitlinie KOMPAKT. In dem kurzen Video geht es darum, was sich im Vergleich zur vorigen Fassung der Leitlinie geändert hat, welche Aspekte für die tägliche Praxis besonders wichtig sind und was jeder gemäß Leitlinie nun anders oder besser machen sollte.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.