Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 4/2016

12.08.2016

Advances in TRH signaling

verfasst von: Patricia Joseph-Bravo, Lorraine Jaimes-Hoy, Jean-Louis Charli

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol. 2015;224(3):R139–59.PubMedCrossRef Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol. 2015;224(3):R139–59.PubMedCrossRef
2.
Zurück zum Zitat Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.PubMedCrossRef Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.PubMedCrossRef
3.
Zurück zum Zitat Wittmann G, Füzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C. Efferent projections of thyrotropin-releasing hormone-synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol. 2009;515(3):313–30.PubMedPubMedCentral Wittmann G, Füzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C. Efferent projections of thyrotropin-releasing hormone-synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol. 2009;515(3):313–30.PubMedPubMedCentral
5.
Zurück zum Zitat Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci. 2010;1212:114–29.PubMedCrossRef Kalsbeek A, Bruinstroop E, Yi CX, Klieverik LP, La Fleur SE, Fliers E. Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci. 2010;1212:114–29.PubMedCrossRef
6.
Zurück zum Zitat Shi ZX, Levy A, Lightman SL. Hippocampal input to the hypothalamus inhibits thyrotrophin and thyrotrophin-releasing hormone gene expression. Neuroendocrinology. 1993;57(4):576–80.PubMedCrossRef Shi ZX, Levy A, Lightman SL. Hippocampal input to the hypothalamus inhibits thyrotrophin and thyrotrophin-releasing hormone gene expression. Neuroendocrinology. 1993;57(4):576–80.PubMedCrossRef
7.
Zurück zum Zitat Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol. 2014;171(5):R197–208.PubMedCrossRef Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol. 2014;171(5):R197–208.PubMedCrossRef
8.
9.
Zurück zum Zitat Mulcahy LR, Vaslet CA, Nillni EA. Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. J Biol Chem. 2005;280(48):39818–26.PubMedCrossRef Mulcahy LR, Vaslet CA, Nillni EA. Prohormone-convertase 1 processing enhances post-Golgi sorting of prothyrotropin-releasing hormone-derived peptides. J Biol Chem. 2005;280(48):39818–26.PubMedCrossRef
10.
Zurück zum Zitat Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell. 1998;9(9):2463–76.PubMedPubMedCentralCrossRef Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, Scalettar BA. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell. 1998;9(9):2463–76.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015;9:387.PubMedPubMedCentralCrossRef Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci. 2015;9:387.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Diano S, Leonard JL, Meli R, Esposito E, Schiavo L. Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res. 2003;976(1):130–4.PubMedCrossRef Diano S, Leonard JL, Meli R, Esposito E, Schiavo L. Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Res. 2003;976(1):130–4.PubMedCrossRef
13.
Zurück zum Zitat Sánchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology. 2009;150(5):2283–91.PubMedPubMedCentralCrossRef Sánchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology. 2009;150(5):2283–91.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Charli JL, Cruz C, Vargas MA, Joseph-Bravo P. The narrow specificity pyroglutamate amino peptidase degrading TRH in rat brain is an ectoenzyme. Neurochem Int. 1988;13(2):237–42.PubMedCrossRef Charli JL, Cruz C, Vargas MA, Joseph-Bravo P. The narrow specificity pyroglutamate amino peptidase degrading TRH in rat brain is an ectoenzyme. Neurochem Int. 1988;13(2):237–42.PubMedCrossRef
15.
Zurück zum Zitat Bauer K, Carmeliet P, Schulz M, Baes M, Denef C. Regulation and cellular localization of the membrane-bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology. 1990;127(3):1224–33.PubMedCrossRef Bauer K, Carmeliet P, Schulz M, Baes M, Denef C. Regulation and cellular localization of the membrane-bound thyrotropin-releasing hormone-degrading enzyme in primary cultures of neuronal, glial and adenohypophyseal cells. Endocrinology. 1990;127(3):1224–33.PubMedCrossRef
16.
Zurück zum Zitat Sánchez E, Charli JL, Lechan RM. Pyroglutamyl-peptidase II In: Rawlings, N.D. Handbook of Proteolytic Enzymes. Academic Press. 2013:414–9. Sánchez E, Charli JL, Lechan RM. Pyroglutamyl-peptidase II In: Rawlings, N.D. Handbook of Proteolytic Enzymes. Academic Press. 2013:414–9.
17.
Zurück zum Zitat Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;226(2):T85–T100. Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;226(2):T85–T100.
18.
Zurück zum Zitat Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castaño JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164(1):40–50.PubMedCrossRef Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castaño JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol. 2009;164(1):40–50.PubMedCrossRef
19.
Zurück zum Zitat Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci. 2012;6:180.PubMedPubMedCentralCrossRef Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin-releasing hormone receptor. Front Neurosci. 2012;6:180.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Shupnik MA, Chin WW, Habener JF, Ridgway EC. Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem. 1985;260(5):2900–3.PubMed Shupnik MA, Chin WW, Habener JF, Ridgway EC. Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem. 1985;260(5):2900–3.PubMed
21.
Zurück zum Zitat Weintraub BD, Gesundheit N, Taylor T, Gyves PW. Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci. 1989;553:205–13.PubMedCrossRef Weintraub BD, Gesundheit N, Taylor T, Gyves PW. Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci. 1989;553:205–13.PubMedCrossRef
22.
Zurück zum Zitat Kanasaki H, Oride A, Mijiddorj T, Kyo S. Role of thyrotropin-releasing hormone in prolactin-producing cell models. Neuropeptides. 2015;54:73–7.PubMedCrossRef Kanasaki H, Oride A, Mijiddorj T, Kyo S. Role of thyrotropin-releasing hormone in prolactin-producing cell models. Neuropeptides. 2015;54:73–7.PubMedCrossRef
23.
Zurück zum Zitat Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology. 2015;156(1):242–54.PubMedCrossRef Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology. 2015;156(1):242–54.PubMedCrossRef
24.
Zurück zum Zitat Bockmann J, Böckers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, Kreutz MR. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3, 5,3'-triiodothyronine, thyrotropin-releasing hormone, and pit-1 independent. Endocrinology. 1997;138(3):1019–28. Bockmann J, Böckers TM, Winter C, Wittkowski W, Winterhoff H, Deufel T, Kreutz MR. Thyrotropin expression in hypophyseal pars tuberalis-specific cells is 3, 5,3'-triiodothyronine, thyrotropin-releasing hormone, and pit-1 independent. Endocrinology. 1997;138(3):1019–28.
25.
Zurück zum Zitat Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T. Hypothalamic expression of thyroid hormone-activating and-inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R568–72.PubMedCrossRef Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T. Hypothalamic expression of thyroid hormone-activating and-inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R568–72.PubMedCrossRef
26.
Zurück zum Zitat Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A. 2008;105(47):18238–42.PubMedPubMedCentralCrossRef Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T. Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A. 2008;105(47):18238–42.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Bolborea M, Helfer G, Ebling FJ, Barrett P. Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J Mol Endocrinol. 2015;54(3):241–50.PubMedCrossRef Bolborea M, Helfer G, Ebling FJ, Barrett P. Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J Mol Endocrinol. 2015;54(3):241–50.PubMedCrossRef
28.
Zurück zum Zitat Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 2014;9(3):801–10.PubMedPubMedCentralCrossRef Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 2014;9(3):801–10.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology. 2010;151(2):793–801.PubMedCrossRef Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology. 2010;151(2):793–801.PubMedCrossRef
30.
Zurück zum Zitat Hollenberg AN. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid. 2008;18(2):131–9.PubMedCrossRef Hollenberg AN. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid. 2008;18(2):131–9.PubMedCrossRef
31.
Zurück zum Zitat Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest. 2001;107(8):1017–23.PubMedPubMedCentralCrossRef Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest. 2001;107(8):1017–23.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Ishii S, Yamada M, Satoh T, Monden T, Hashimoto K, Shibusawa N, Onigata K, Morikawa A, Mori M. Aberrant dynamics of histone deacetylation at the thyrotropin-releasing hormone gene in resistance to thyroid hormone. Mol Endocrinol. 2004;18(7):1708–20.PubMedCrossRef Ishii S, Yamada M, Satoh T, Monden T, Hashimoto K, Shibusawa N, Onigata K, Morikawa A, Mori M. Aberrant dynamics of histone deacetylation at the thyrotropin-releasing hormone gene in resistance to thyroid hormone. Mol Endocrinol. 2004;18(7):1708–20.PubMedCrossRef
33.
Zurück zum Zitat Díaz-Gallardo MY, Cote-Vélez A, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Phosphorylated cyclic-AMP-response element-binding protein and thyroid hormone receptor have independent response elements in the rat thyrotropin-releasing hormone promoter: an analysis in hypothalamic cells. Neuroendocrinology. 2010;91(1):64–76.PubMedCrossRef Díaz-Gallardo MY, Cote-Vélez A, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Phosphorylated cyclic-AMP-response element-binding protein and thyroid hormone receptor have independent response elements in the rat thyrotropin-releasing hormone promoter: an analysis in hypothalamic cells. Neuroendocrinology. 2010;91(1):64–76.PubMedCrossRef
34.
Zurück zum Zitat Vella KR, Ramadoss P, Costa-E-Sousa RH, Astapova I, Ye FD, Holtz KA, Harris JC, Hollenberg AN. Thyroid hormone signaling in vivo requires a balance between coactivators and corepressors. Mol Cell Biol. 2014;34(9):1564–75.PubMedPubMedCentralCrossRef Vella KR, Ramadoss P, Costa-E-Sousa RH, Astapova I, Ye FD, Holtz KA, Harris JC, Hollenberg AN. Thyroid hormone signaling in vivo requires a balance between coactivators and corepressors. Mol Cell Biol. 2014;34(9):1564–75.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Matsunaga H, Sasaki S, Suzuki S, Matsushita A, Nakamura H, Nakamura HM, Hirahara N, Kuroda G, Iwaki H, Ohba K, Morita H, Oki Y, Suda T. Essential role of GATA2 in the negative regulation of type 2 deiodinase Gene by Liganded thyroid hormone receptor β2 in thyrotroph. PLoS One. 2015;10(11):e0142400.PubMedPubMedCentralCrossRef Matsunaga H, Sasaki S, Suzuki S, Matsushita A, Nakamura H, Nakamura HM, Hirahara N, Kuroda G, Iwaki H, Ohba K, Morita H, Oki Y, Suda T. Essential role of GATA2 in the negative regulation of type 2 deiodinase Gene by Liganded thyroid hormone receptor β2 in thyrotroph. PLoS One. 2015;10(11):e0142400.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhang R, Wang Y, Li R, Chen G. Transcriptional factors mediating retinoic acid signals in the control of energy metabolism. Int J Mol Sci. 2015;16(6):14210–44.PubMedPubMedCentralCrossRef Zhang R, Wang Y, Li R, Chen G. Transcriptional factors mediating retinoic acid signals in the control of energy metabolism. Int J Mol Sci. 2015;16(6):14210–44.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Decherf S, Seugnet I, Becker N, Demeneix BA, Clerget-Froidevaux MS. Retinoic X receptor subtypes exert differential effects on the regulation of Trh transcription. Mol Cell Endocrinol. 2013;381(1–2):115–23.PubMedCrossRef Decherf S, Seugnet I, Becker N, Demeneix BA, Clerget-Froidevaux MS. Retinoic X receptor subtypes exert differential effects on the regulation of Trh transcription. Mol Cell Endocrinol. 2013;381(1–2):115–23.PubMedCrossRef
39.
Zurück zum Zitat Sharma V, Hays WR, Wood WM, Pugazhenthi U, St Germain DL, Bianco AC, Krezel W, Chambon P, Haugen BR. Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology. 2006;147(3):1438–51.PubMedCrossRef Sharma V, Hays WR, Wood WM, Pugazhenthi U, St Germain DL, Bianco AC, Krezel W, Chambon P, Haugen BR. Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology. 2006;147(3):1438–51.PubMedCrossRef
40.
Zurück zum Zitat Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia. 2016;64(3):425–39.PubMedCrossRef Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia. 2016;64(3):425–39.PubMedCrossRef
41.
Zurück zum Zitat Kouidhi S, Seugnet I, Decherf S, Guissouma H, Elgaaied AB, Demeneix B, Clerget-Froidevaux MS. Peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates hypothalamic Trh regulation in vivo. Mol Cell Endocrinol. 2010;317(1–2):44–52.PubMedCrossRef Kouidhi S, Seugnet I, Decherf S, Guissouma H, Elgaaied AB, Demeneix B, Clerget-Froidevaux MS. Peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates hypothalamic Trh regulation in vivo. Mol Cell Endocrinol. 2010;317(1–2):44–52.PubMedCrossRef
42.
Zurück zum Zitat Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(3):177–90.PubMedCrossRef Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts. 2015;6(3):177–90.PubMedCrossRef
43.
Zurück zum Zitat Ghaddab-Zroud R, Seugnet I, Steffensen KR, Demeneix BA, Clerget-Froidevaux MS. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One. 2014;9(9):e106983.PubMedPubMedCentralCrossRef Ghaddab-Zroud R, Seugnet I, Steffensen KR, Demeneix BA, Clerget-Froidevaux MS. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One. 2014;9(9):e106983.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Miao Y, Wu W, Dai Y, Maneix L, Huang B, Warner M, Gustafsson JÅ. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci U S A. 2015;112(45):14006–11.PubMedPubMedCentralCrossRef Miao Y, Wu W, Dai Y, Maneix L, Huang B, Warner M, Gustafsson JÅ. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci U S A. 2015;112(45):14006–11.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Cermenati G, Brioschi E, Abbiati F, Melcangi RC, Caruso D, Mitro N. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Investig. 2013;36(6):435–43. Cermenati G, Brioschi E, Abbiati F, Melcangi RC, Caruso D, Mitro N. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Investig. 2013;36(6):435–43.
47.
Zurück zum Zitat Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–52.PubMedCrossRef Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–52.PubMedCrossRef
48.
Zurück zum Zitat Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17.PubMedCrossRef Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 2015;11(7):406–17.PubMedCrossRef
49.
Zurück zum Zitat Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta. 2013;1830(7):3965–73.PubMedCrossRef Schweizer U, Köhrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta. 2013;1830(7):3965–73.PubMedCrossRef
50.
Zurück zum Zitat Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta. 2013;1830(7):3974–8.PubMedCrossRef Heuer H, Visser TJ. The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta. 2013;1830(7):3974–8.PubMedCrossRef
51.
Zurück zum Zitat Werneck de Castro JP, Fonseca TL, Ueta CB, McAninch EA, Abdalla S, Wittmann G, Lechan RM, Gereben B, Bianco AC. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Invest. 2015;125(2):769–81.PubMedPubMedCentralCrossRef Werneck de Castro JP, Fonseca TL, Ueta CB, McAninch EA, Abdalla S, Wittmann G, Lechan RM, Gereben B, Bianco AC. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Invest. 2015;125(2):769–81.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology. 1997;138(8):3359–68.PubMed Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology. 1997;138(8):3359–68.PubMed
53.
Zurück zum Zitat Kalló I, Mohácsik P, Vida B, Zeöld A, Bardóczi Z, Zavacki AM, Farkas E, Kádár A, Hrabovszky E, Arrojo E, Drigo R, Dong L, Barna L, Palkovits M, Borsay BA, Herczeg L, Lechan RM, Bianco AC, Liposits Z, Fekete C, Gereben B. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012;7(6):e37860.PubMedPubMedCentralCrossRef Kalló I, Mohácsik P, Vida B, Zeöld A, Bardóczi Z, Zavacki AM, Farkas E, Kádár A, Hrabovszky E, Arrojo E, Drigo R, Dong L, Barna L, Palkovits M, Borsay BA, Herczeg L, Lechan RM, Bianco AC, Liposits Z, Fekete C, Gereben B. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One. 2012;7(6):e37860.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology. 1999;140(2):784–90.PubMed Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology. 1999;140(2):784–90.PubMed
55.
Zurück zum Zitat Herwig A, Campbell G, Mayer CD, Boelen A, Anderson RA, Ross AW, Mercer JG, Barrett P. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid. 2014;24(11):1575–93.PubMedPubMedCentralCrossRef Herwig A, Campbell G, Mayer CD, Boelen A, Anderson RA, Ross AW, Mercer JG, Barrett P. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid. 2014;24(11):1575–93.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab. 2008;4(3):148–55.PubMedPubMedCentralCrossRef Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab. 2008;4(3):148–55.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11(11):642–52.PubMedPubMedCentralCrossRef Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11(11):642–52.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Calvino C, Império GE, Wilieman M, Costa-E-Sousa RH, Souza LL, Trevenzoli IH, Pazos-Moura CC. Hypothyroidism induces Hypophagia associated with alterations in protein expression of neuropeptide Y and proopiomelanocortin in the arcuate nucleus, independently of hypothalamic nuclei-specific changes in leptin signaling. Thyroid. 2016;26(1):134–43.PubMedCrossRef Calvino C, Império GE, Wilieman M, Costa-E-Sousa RH, Souza LL, Trevenzoli IH, Pazos-Moura CC. Hypothyroidism induces Hypophagia associated with alterations in protein expression of neuropeptide Y and proopiomelanocortin in the arcuate nucleus, independently of hypothalamic nuclei-specific changes in leptin signaling. Thyroid. 2016;26(1):134–43.PubMedCrossRef
59.
Zurück zum Zitat Koller KJ, Wolff RS, Warden MK, Zoeller RT. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci U S A. 1987;84(20):7329–33.PubMedPubMedCentralCrossRef Koller KJ, Wolff RS, Warden MK, Zoeller RT. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci U S A. 1987;84(20):7329–33.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science. 1987;238(4823):78–80.PubMedCrossRef Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science. 1987;238(4823):78–80.PubMedCrossRef
61.
Zurück zum Zitat Kakucska I, Rand W, Lechan RM. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology. 1992;130(5):2845–50.PubMed Kakucska I, Rand W, Lechan RM. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology. 1992;130(5):2845–50.PubMed
62.
Zurück zum Zitat Perello M, Friedman T, Paez-Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology. 2006;147(6):2705–16.PubMedCrossRef Perello M, Friedman T, Paez-Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology. 2006;147(6):2705–16.PubMedCrossRef
63.
Zurück zum Zitat Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sánchez-Jaramillo E, Charli JL. Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology. 2015;156(7):2713–23.PubMedCrossRef Lazcano I, Cabral A, Uribe RM, Jaimes-Hoy L, Perello M, Joseph-Bravo P, Sánchez-Jaramillo E, Charli JL. Fasting enhances pyroglutamyl peptidase II activity in tanycytes of the mediobasal hypothalamus of male adult rats. Endocrinology. 2015;156(7):2713–23.PubMedCrossRef
64.
Zurück zum Zitat Marsili A, Sanchez E, Singru P, Harney JW, Zavacki AM, Lechan RM, Larsen PR. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol. 2011;211(1):73–8.PubMedPubMedCentralCrossRef Marsili A, Sanchez E, Singru P, Harney JW, Zavacki AM, Lechan RM, Larsen PR. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol. 2011;211(1):73–8.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Bauer K. Regulation of degradation of thyrotropin releasing hormone by thyroid hormones. Nature. 1976;259(5544):591–3.PubMedCrossRef Bauer K. Regulation of degradation of thyrotropin releasing hormone by thyroid hormones. Nature. 1976;259(5544):591–3.PubMedCrossRef
66.
Zurück zum Zitat Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem. 2002;269(4):1278–86.PubMedCrossRef Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin-releasing hormone (TRH)-degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem. 2002;269(4):1278–86.PubMedCrossRef
67.
Zurück zum Zitat Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol. 2012;26(6):926–39.PubMedPubMedCentralCrossRef Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol. 2012;26(6):926–39.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Schomburg L, Bauer K. Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology. 1995;136(8):3480–5.PubMed Schomburg L, Bauer K. Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology. 1995;136(8):3480–5.PubMed
69.
Zurück zum Zitat Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol (Lausanne). 2015;6:–177. Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment. Front Endocrinol (Lausanne). 2015;6:–177.
70.
Zurück zum Zitat Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid. 2015;25(8):954–61.PubMedCrossRef Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid. 2015;25(8):954–61.PubMedCrossRef
71.
Zurück zum Zitat Cruz R, Chávez-Gutiérrez L, Joseph-Bravo P, Charli JL. 3,3',5'-triiodo-L-thyronine reduces efficiency of mRNA knockdown by antisense oligodeoxynucleotides: a study with pyroglutamyl aminopeptidase II in adenohypophysis. Oligonucleotides. 2004;14(3):176–90.PubMed Cruz R, Chávez-Gutiérrez L, Joseph-Bravo P, Charli JL. 3,3',5'-triiodo-L-thyronine reduces efficiency of mRNA knockdown by antisense oligodeoxynucleotides: a study with pyroglutamyl aminopeptidase II in adenohypophysis. Oligonucleotides. 2004;14(3):176–90.PubMed
72.
Zurück zum Zitat de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.PubMedCrossRef de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.PubMedCrossRef
73.
Zurück zum Zitat Sánchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151(8):3827–35.PubMedPubMedCentralCrossRef Sánchez E, Singru PS, Wittmann G, Nouriel SS, Barrett P, Fekete C, Lechan RM. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration. Endocrinology. 2010;151(8):3827–35.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Wittmann G, Harney JW, Singru PS, Nouriel SS, Reed Larsen P, Lechan RM. Inflammation-inducible type 2 deiodinase expression in the leptomeninges, choroid plexus, and at brain blood vessels in male rodents. Endocrinology. 2014;155(5):2009–19.PubMedPubMedCentralCrossRef Wittmann G, Harney JW, Singru PS, Nouriel SS, Reed Larsen P, Lechan RM. Inflammation-inducible type 2 deiodinase expression in the leptomeninges, choroid plexus, and at brain blood vessels in male rodents. Endocrinology. 2014;155(5):2009–19.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat de Vries EM, Kwakkel J, Eggels L, Kalsbeek A, Barrett P, Fliers E, Boelen A. NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes. Endocrinology. 2014;155(5):2000–8.PubMedCrossRef de Vries EM, Kwakkel J, Eggels L, Kalsbeek A, Barrett P, Fliers E, Boelen A. NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes. Endocrinology. 2014;155(5):2000–8.PubMedCrossRef
76.
Zurück zum Zitat Wittmann G, Szabon J, Mohácsik P, Nouriel SS, Gereben B, Fekete C, Lechan RM. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology. 2015;156(4):1552–64.PubMedPubMedCentralCrossRef Wittmann G, Szabon J, Mohácsik P, Nouriel SS, Gereben B, Fekete C, Lechan RM. Parallel regulation of thyroid hormone transporters OATP1c1 and MCT8 during and after endotoxemia at the blood-brain barrier of male rodents. Endocrinology. 2015;156(4):1552–64.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Guo F, Bakal K, Minokoshi Y, Hollenberg AN. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology. 2004;145(5):2221–7.PubMedCrossRef Guo F, Bakal K, Minokoshi Y, Hollenberg AN. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology. 2004;145(5):2221–7.PubMedCrossRef
78.
Zurück zum Zitat Ghamari-Langroudi M, Srisai D, Cone RD. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc Natl Acad Sci U S A. 2011;108(1):355–60.PubMedCrossRef Ghamari-Langroudi M, Srisai D, Cone RD. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc Natl Acad Sci U S A. 2011;108(1):355–60.PubMedCrossRef
79.
Zurück zum Zitat Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138(6):2569–76.PubMed Légrádi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology. 1997;138(6):2569–76.PubMed
80.
Zurück zum Zitat Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology. 2005;146(6):2827–33.PubMedCrossRef Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats. Endocrinology. 2005;146(6):2827–33.PubMedCrossRef
81.
Zurück zum Zitat Bergen HT, Mizuno T, Taylor J, Mobbs CV. Resistance to diet-induced obesity is associated with increased proopiomelanocortin mRNA and decreased neuropeptide Y mRNA in the hypothalamus. Brain Res. 1999;851(1–2):198–203.PubMedCrossRef Bergen HT, Mizuno T, Taylor J, Mobbs CV. Resistance to diet-induced obesity is associated with increased proopiomelanocortin mRNA and decreased neuropeptide Y mRNA in the hypothalamus. Brain Res. 1999;851(1–2):198–203.PubMedCrossRef
82.
Zurück zum Zitat Perello M, Cakir I, Cyr NE, Romero A, Stuart RC, Chiappini F, Hollenberg AN, Nillni EA. Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab. 2010;299(6):E976–89.PubMedPubMedCentralCrossRef Perello M, Cakir I, Cyr NE, Romero A, Stuart RC, Chiappini F, Hollenberg AN, Nillni EA. Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab. 2010;299(6):E976–89.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology. 2015;156(3):961–74.PubMedCrossRef Cyr NE, Steger JS, Toorie AM, Yang JZ, Stuart R, Nillni EA. Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet-induced obese male rats. Endocrinology. 2015;156(3):961–74.PubMedCrossRef
84.
Zurück zum Zitat Cifani C, Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Di Francesco A, Maccarrone M, D'Addario C. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187.PubMedPubMedCentralCrossRef Cifani C, Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Di Francesco A, Maccarrone M, D'Addario C. Regulation of hypothalamic neuropeptides gene expression in diet induced obesity resistant rats: possible targets for obesity prediction? Front Neurosci. 2015;9:187.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Xia SF, Duan XM, Hao LY, Li LT, Cheng XR, Xie ZX, Qiao Y, Li LR, Tang X, Shi YH, Le GW. Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism. 2015;64(5):566–79.PubMedCrossRef Xia SF, Duan XM, Hao LY, Li LT, Cheng XR, Xie ZX, Qiao Y, Li LR, Tang X, Shi YH, Le GW. Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism. 2015;64(5):566–79.PubMedCrossRef
86.
Zurück zum Zitat Byerly MS, Simon J, Lebihan-Duval E, Duclos MJ, Cogburn LA, Porter TE. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1180–9.PubMedPubMedCentralCrossRef Byerly MS, Simon J, Lebihan-Duval E, Duclos MJ, Cogburn LA, Porter TE. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R1180–9.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38.PubMedPubMedCentralCrossRef Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Mariman EC, Bouwman FG, Aller EE, van Baak MA, Wang P. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol Genomics. 2015;47(6):225–31.PubMedCrossRef Mariman EC, Bouwman FG, Aller EE, van Baak MA, Wang P. Extreme obesity is associated with variation in genes related to the circadian rhythm of food intake and hypothalamic signaling. Physiol Genomics. 2015;47(6):225–31.PubMedCrossRef
89.
Zurück zum Zitat Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne). 2015;6:–143. Nuzzaci D, Laderrière A, Lemoine A, Nédélec E, Pénicaud L, Rigault C, Benani A. Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Front Endocrinol (Lausanne). 2015;6:–143.
90.
Zurück zum Zitat Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22(6):962–70.PubMedCrossRef Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22(6):962–70.PubMedCrossRef
91.
Zurück zum Zitat Uribe RM, Redondo JL, Charli JL, Joseph-Bravo P. Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology. 1993;58(1):140–5.PubMedCrossRef Uribe RM, Redondo JL, Charli JL, Joseph-Bravo P. Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology. 1993;58(1):140–5.PubMedCrossRef
92.
Zurück zum Zitat Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. Regul Pept. 2012;179(1–3):61–70.PubMedCrossRef Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. Regul Pept. 2012;179(1–3):61–70.PubMedCrossRef
93.
Zurück zum Zitat Sánchez E, Uribe RM, Corkidi G, Zoeller RT, Cisneros M, Zacarias M, Morales-Chapa C, Charli JL, Joseph-Bravo P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology. 2001;74(6):407–22.PubMedCrossRef Sánchez E, Uribe RM, Corkidi G, Zoeller RT, Cisneros M, Zacarias M, Morales-Chapa C, Charli JL, Joseph-Bravo P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology. 2001;74(6):407–22.PubMedCrossRef
94.
Zurück zum Zitat Aguilar-Valles A, Sánchez E, de Gortari P, García-Vazquez AI, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P. The expression of TRH, its receptors and degrading enzyme is differentially modulated in the rat limbic system during training in the Morris water maze. Neurochem Int. 2007;50(2):404–17.PubMedCrossRef Aguilar-Valles A, Sánchez E, de Gortari P, García-Vazquez AI, Ramírez-Amaya V, Bermúdez-Rattoni F, Joseph-Bravo P. The expression of TRH, its receptors and degrading enzyme is differentially modulated in the rat limbic system during training in the Morris water maze. Neurochem Int. 2007;50(2):404–17.PubMedCrossRef
95.
Zurück zum Zitat Perello M, Stuart RC, Vaslet CA, Nillni EA. Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology. 2007;148(10):4952–64.PubMedCrossRef Perello M, Stuart RC, Vaslet CA, Nillni EA. Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology. 2007;148(10):4952–64.PubMedCrossRef
96.
Zurück zum Zitat Sotelo-Rivera I, Jaimes-Hoy L, Cote-Vélez A, Espinoza-Ayala C, Charli JL, Joseph-Bravo P. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats. J Neuroendocrinol. 2014;26(12):861–9.PubMedCrossRef Sotelo-Rivera I, Jaimes-Hoy L, Cote-Vélez A, Espinoza-Ayala C, Charli JL, Joseph-Bravo P. An acute injection of corticosterone increases thyrotrophin-releasing hormone expression in the paraventricular nucleus of the hypothalamus but interferes with the rapid hypothalamus pituitary thyroid axis response to cold in male rats. J Neuroendocrinol. 2014;26(12):861–9.PubMedCrossRef
98.
Zurück zum Zitat Zoeller RT, Kabeer N, Albers HE. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology. 1990;127(6):2955–62.PubMedCrossRef Zoeller RT, Kabeer N, Albers HE. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology. 1990;127(6):2955–62.PubMedCrossRef
99.
Zurück zum Zitat Cote-Vélez A, Pérez-Martínez L, Díaz-Gallardo MY, Pérez-Monter C, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. J Mol Endocrinol. 2005;34(1):177–97.PubMedCrossRef Cote-Vélez A, Pérez-Martínez L, Díaz-Gallardo MY, Pérez-Monter C, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. J Mol Endocrinol. 2005;34(1):177–97.PubMedCrossRef
100.
Zurück zum Zitat Cote-Vélez A, Pérez-Martínez L, Charli JL, Joseph-Bravo P. The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription. Neurochem Res. 2008;33(8):1582–91.PubMedCrossRef Cote-Vélez A, Pérez-Martínez L, Charli JL, Joseph-Bravo P. The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription. Neurochem Res. 2008;33(8):1582–91.PubMedCrossRef
101.
Zurück zum Zitat Díaz-Gallardo MY, Cote-Vélez A, Charli JL, Joseph-Bravo P. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurons prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-like and composite GRE sites of thyrotrophin-releasing hormone gene promoter. J Neuroendocrinol. 2010;22(4):282–93.PubMedCrossRef Díaz-Gallardo MY, Cote-Vélez A, Charli JL, Joseph-Bravo P. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurons prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-like and composite GRE sites of thyrotrophin-releasing hormone gene promoter. J Neuroendocrinol. 2010;22(4):282–93.PubMedCrossRef
102.
Zurück zum Zitat Cote-Vélez A, Pérez-Maldonado A, Osuna J, Barrera B, Charli JL, Joseph-Bravo P. Creb and Sp/Krüppel response elements cooperate to control rat TRH gene transcription in response to cAMP. Biochim Biophys Acta. 2011;1809(3):191–9.PubMedCrossRef Cote-Vélez A, Pérez-Maldonado A, Osuna J, Barrera B, Charli JL, Joseph-Bravo P. Creb and Sp/Krüppel response elements cooperate to control rat TRH gene transcription in response to cAMP. Biochim Biophys Acta. 2011;1809(3):191–9.PubMedCrossRef
103.
Zurück zum Zitat Sarkar S, Légrádi G, Lechan RM. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res. 2002;945(1):50–9.PubMedCrossRef Sarkar S, Légrádi G, Lechan RM. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res. 2002;945(1):50–9.PubMedCrossRef
104.
Zurück zum Zitat Osterlund C, Spencer RL. Corticosterone pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis activity via multiple actions that vary with time, site of action, and de novo protein synthesis. J Endocrinol. 2011;208(3):311–22.PubMedPubMedCentral Osterlund C, Spencer RL. Corticosterone pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis activity via multiple actions that vary with time, site of action, and de novo protein synthesis. J Endocrinol. 2011;208(3):311–22.PubMedPubMedCentral
106.
Zurück zum Zitat Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37(9):577–84.PubMedCrossRef Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res. 2005;37(9):577–84.PubMedCrossRef
107.
Zurück zum Zitat Fortunato RS, Ignácio DL, Padron AS, Peçanha R, Marassi MP, Rosenthal D, Werneck-de-Castro JP, Carvalho DP. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198(2):347–53.PubMedCrossRef Fortunato RS, Ignácio DL, Padron AS, Peçanha R, Marassi MP, Rosenthal D, Werneck-de-Castro JP, Carvalho DP. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198(2):347–53.PubMedCrossRef
108.
Zurück zum Zitat Ignacio DL, da S Silvestre DH, Cavalcanti-de-Albuquerque JP, Louzada RA, Carvalho DP, Werneck-de-Castro JP. Thyroid hormone and estrogen regulate exercise-induced growth hormone release. PLoS One. 2015;10(4):e0122556.PubMedPubMedCentralCrossRef Ignacio DL, da S Silvestre DH, Cavalcanti-de-Albuquerque JP, Louzada RA, Carvalho DP, Werneck-de-Castro JP. Thyroid hormone and estrogen regulate exercise-induced growth hormone release. PLoS One. 2015;10(4):e0122556.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology. 2014;155(5):2020–30.PubMedCrossRef Uribe RM, Jaimes-Hoy L, Ramírez-Martínez C, García-Vázquez A, Romero F, Cisneros M, Cote-Vélez A, Charli JL, Joseph-Bravo P. Voluntary exercise adapts the hypothalamus-pituitary-thyroid axis in male rats. Endocrinology. 2014;155(5):2020–30.PubMedCrossRef
110.
Zurück zum Zitat Martin B, Ji S, Maudsley S, Mattson MP. “control” laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A. 2010;107(14):6127–33.PubMedPubMedCentralCrossRef Martin B, Ji S, Maudsley S, Mattson MP. “control” laboratory rodents are metabolically morbid: why it matters. Proc Natl Acad Sci U S A. 2010;107(14):6127–33.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Yamada M, Satoh T, Mori M. Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid. 2003;13(12):1111–21.PubMedCrossRef Yamada M, Satoh T, Mori M. Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid. 2003;13(12):1111–21.PubMedCrossRef
112.
Zurück zum Zitat García M, Fernández A, Moreno JC. Central hypothyroidism in children. Endocr Dev. 2014;26:79–107.PubMed García M, Fernández A, Moreno JC. Central hypothyroidism in children. Endocr Dev. 2014;26:79–107.PubMed
113.
Zurück zum Zitat Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev. 2015;36(2):214–44.PubMedCrossRef Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev. 2015;36(2):214–44.PubMedCrossRef
114.
Zurück zum Zitat Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227(3):R51–71.PubMedPubMedCentralCrossRef Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227(3):R51–71.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Koulouri O, Nicholas AK, Schoenmakers E, Mokrosinski J, Lane F, Cole T, Kirk J, Farooqi IS, Chatterjee VK, Gurnell M, Schoenmakers N. A novel thyrotropin-releasing hormone receptor missense mutation (P81R) in central congenital hypothyroidism. J Clin Endocrinol Metab. 2016;101(3):847–51.PubMedPubMedCentralCrossRef Koulouri O, Nicholas AK, Schoenmakers E, Mokrosinski J, Lane F, Cole T, Kirk J, Farooqi IS, Chatterjee VK, Gurnell M, Schoenmakers N. A novel thyrotropin-releasing hormone receptor missense mutation (P81R) in central congenital hypothyroidism. J Clin Endocrinol Metab. 2016;101(3):847–51.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Collu R, Tang J, Castagné J, Lagacé G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA, Van Vliet G. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82(5):1561–5.PubMed Collu R, Tang J, Castagné J, Lagacé G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA, Van Vliet G. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82(5):1561–5.PubMed
117.
Zurück zum Zitat Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med. 2009;360(7):731–4.PubMedCrossRef Bonomi M, Busnelli M, Beck-Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med. 2009;360(7):731–4.PubMedCrossRef
118.
Zurück zum Zitat Rabeler R, Mittag J, Geffers L, Rüther U, Leitges M, Parlow AF, Visser TJ, Bauer K. Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol. 2004;18(6):1450–60.PubMedCrossRef Rabeler R, Mittag J, Geffers L, Rüther U, Leitges M, Parlow AF, Visser TJ, Bauer K. Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol. 2004;18(6):1450–60.PubMedCrossRef
119.
Zurück zum Zitat Fuku N, He ZH, Sanchis-Gomar F, Pareja-Galeano H, Tian Y, Arai Y, Abe Y, Murakami H, Miyachi M, Zempo H, Naito H, Yvert T, Verde Z, Venturini L, Fiuza-Luces C, Santos-Lozano A, Rodriguez-Romo G, Ricevuti G, Hirose N, Emanuele E, Garatachea N, Lucia A. Exceptional longevity and muscle and fitness related genotypes: a functional in vitro analysis and case-control association replication study with SNPs THRH rs7832552, IL6 rs1800795, and ACSL1 rs6552828. Front Aging Neurosci. 2015;7:59.PubMedPubMedCentralCrossRef Fuku N, He ZH, Sanchis-Gomar F, Pareja-Galeano H, Tian Y, Arai Y, Abe Y, Murakami H, Miyachi M, Zempo H, Naito H, Yvert T, Verde Z, Venturini L, Fiuza-Luces C, Santos-Lozano A, Rodriguez-Romo G, Ricevuti G, Hirose N, Emanuele E, Garatachea N, Lucia A. Exceptional longevity and muscle and fitness related genotypes: a functional in vitro analysis and case-control association replication study with SNPs THRH rs7832552, IL6 rs1800795, and ACSL1 rs6552828. Front Aging Neurosci. 2015;7:59.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet. 2009;84(3):418–23.PubMedPubMedCentralCrossRef Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet. 2009;84(3):418–23.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Lunardi CC, Lima RM, Pereira RW, Leite TK, Siqueira AB, Oliveira RJ. Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. Age (Dordr). 2013;35(6):2477–83.CrossRef Lunardi CC, Lima RM, Pereira RW, Leite TK, Siqueira AB, Oliveira RJ. Association between polymorphisms in the TRHR gene, fat-free mass, and muscle strength in older women. Age (Dordr). 2013;35(6):2477–83.CrossRef
122.
Zurück zum Zitat Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S. A genomic atlas of mouse hypothalamic development. Nat Neurosci. 2010;13(6):767–75.PubMedPubMedCentralCrossRef Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S. A genomic atlas of mouse hypothalamic development. Nat Neurosci. 2010;13(6):767–75.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Díaz C, Morales-Delgado N, Puelles L. Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Front Neuroanat. 2014;8:162.PubMed Díaz C, Morales-Delgado N, Puelles L. Ontogenesis of peptidergic neurons within the genoarchitectonic map of the mouse hypothalamus. Front Neuroanat. 2014;8:162.PubMed
124.
Zurück zum Zitat Pearson CA, Placzek M. Development of the medial hypothalamus: forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol. 2013;106:49–88.PubMedCrossRef Pearson CA, Placzek M. Development of the medial hypothalamus: forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol. 2013;106:49–88.PubMedCrossRef
125.
Zurück zum Zitat Guerra-Crespo M, Pérez-Monter C, Janga SC, Castillo-Ramírez S, Gutiérrez-Rios RM, Joseph-Bravo P, Pérez-Martínez L, Charli JL. Transcriptional profiling of fetal hypothalamic TRH neurons. BMC Genomics. 2011;12:222.PubMedPubMedCentralCrossRef Guerra-Crespo M, Pérez-Monter C, Janga SC, Castillo-Ramírez S, Gutiérrez-Rios RM, Joseph-Bravo P, Pérez-Martínez L, Charli JL. Transcriptional profiling of fetal hypothalamic TRH neurons. BMC Genomics. 2011;12:222.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Martínez-Armenta M. Díaz de León-Guerrero S, Catalán a, Alvarez-Arellano L, Uribe RM, Subramaniam M, Charli JL, Pérez-Martínez L. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development. Mol Cell Endocrinol. 2015;400:129–39.PubMedCrossRef Martínez-Armenta M. Díaz de León-Guerrero S, Catalán a, Alvarez-Arellano L, Uribe RM, Subramaniam M, Charli JL, Pérez-Martínez L. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development. Mol Cell Endocrinol. 2015;400:129–39.PubMedCrossRef
128.
Zurück zum Zitat Korevaar TI, Chaker L, Jaddoe VW, Visser TJ, Medici M, Peeters RP. Maternal and birth characteristics are determinants of offspring thyroid function. J Clin Endocrinol Metab. 2016;101(1):206–13.PubMedCrossRef Korevaar TI, Chaker L, Jaddoe VW, Visser TJ, Medici M, Peeters RP. Maternal and birth characteristics are determinants of offspring thyroid function. J Clin Endocrinol Metab. 2016;101(1):206–13.PubMedCrossRef
129.
Zurück zum Zitat Gali Ramamoorthy T, Begum G, Harno E, White A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front Neurosci. 2015;9:126.PubMedPubMedCentralCrossRef Gali Ramamoorthy T, Begum G, Harno E, White A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front Neurosci. 2015;9:126.PubMedPubMedCentralCrossRef
130.
131.
Zurück zum Zitat Markakis EA, Swanson LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Brain Res Rev. 1997;24(2–3):255–91.PubMedCrossRef Markakis EA, Swanson LW. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Brain Res Brain Res Rev. 1997;24(2–3):255–91.PubMedCrossRef
132.
Zurück zum Zitat Bradley DJ, Towle HC, Young WS, 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12(6):2288–2302. Bradley DJ, Towle HC, Young WS, 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci 1992; 12(6):2288–2302.
133.
Zurück zum Zitat Burgunder JM, Taylor T. Ontogeny of thyrotropin-releasing hormone gene expression in the rat diencephalon. Neuroendocrinology. 1989;49(6):631–40.PubMedCrossRef Burgunder JM, Taylor T. Ontogeny of thyrotropin-releasing hormone gene expression in the rat diencephalon. Neuroendocrinology. 1989;49(6):631–40.PubMedCrossRef
134.
Zurück zum Zitat Vargas MA, Herrera J, Uribe RM, Charli JL, Joseph-Bravo P. Ontogenesis of pyroglutamyl peptidase II activity in rat brain, adenohypophysis and pancreas. Brain Res Dev Brain Res. 1992;66(2):251–6.PubMedCrossRef Vargas MA, Herrera J, Uribe RM, Charli JL, Joseph-Bravo P. Ontogenesis of pyroglutamyl peptidase II activity in rat brain, adenohypophysis and pancreas. Brain Res Dev Brain Res. 1992;66(2):251–6.PubMedCrossRef
135.
Zurück zum Zitat Oliver C, Giraud P, Lissitzky JC, Contye-Devolx B, Gillioz P. Influence of thyrotropin-releasing hormone on the secretion of thyrotropin in neonatal rats. Endocrinology. 1981;108(1):179–82.PubMedCrossRef Oliver C, Giraud P, Lissitzky JC, Contye-Devolx B, Gillioz P. Influence of thyrotropin-releasing hormone on the secretion of thyrotropin in neonatal rats. Endocrinology. 1981;108(1):179–82.PubMedCrossRef
136.
Zurück zum Zitat Strbak V, Greer MA. Thyrotropin secretory response to thyrotropin-releasing hormone in the hypothyroid perinatal rat: further evidence of thyrotrophs independence of the hypothalamus during early ontogenesis. Endocrinology. 1981;108(4):1403–6.PubMedCrossRef Strbak V, Greer MA. Thyrotropin secretory response to thyrotropin-releasing hormone in the hypothyroid perinatal rat: further evidence of thyrotrophs independence of the hypothalamus during early ontogenesis. Endocrinology. 1981;108(4):1403–6.PubMedCrossRef
137.
Zurück zum Zitat Kaplan MM, Yaskoski KA. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J Clin Invest. 1981;67(4):1208–14.PubMedPubMedCentralCrossRef Kaplan MM, Yaskoski KA. Maturational patterns of iodothyronine phenolic and tyrosyl ring deiodinase activities in rat cerebrum, cerebellum, and hypothalamus. J Clin Invest. 1981;67(4):1208–14.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94(19):10391–6.PubMedPubMedCentralCrossRef Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94(19):10391–6.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Rodríguez-García M, Jolín T, Santos A, Pérez-Castillo A. Effect of perinatal hypothyroidism on the developmental regulation of rat pituitary growth hormone and thyrotropin genes. Endocrinology. 1995;136(10):4339–50.PubMed Rodríguez-García M, Jolín T, Santos A, Pérez-Castillo A. Effect of perinatal hypothyroidism on the developmental regulation of rat pituitary growth hormone and thyrotropin genes. Endocrinology. 1995;136(10):4339–50.PubMed
140.
Zurück zum Zitat Taylor T, Gyves P, Burgunder JM. Thyroid hormone regulation of TRH mRNA levels in rat paraventricular nucleus of the hypothalamus changes during ontogeny. Neuroendocrinology. 1990;52(3):262–7.PubMedCrossRef Taylor T, Gyves P, Burgunder JM. Thyroid hormone regulation of TRH mRNA levels in rat paraventricular nucleus of the hypothalamus changes during ontogeny. Neuroendocrinology. 1990;52(3):262–7.PubMedCrossRef
141.
Zurück zum Zitat Walker P, Coulombe P, Dussault JH. Effects of triiodothyronine on thyrotropin-releasing hormone-induced thyrotropin release in the neonatal rat. Endocrinology. 1980;107(6):1731–7.PubMedCrossRef Walker P, Coulombe P, Dussault JH. Effects of triiodothyronine on thyrotropin-releasing hormone-induced thyrotropin release in the neonatal rat. Endocrinology. 1980;107(6):1731–7.PubMedCrossRef
142.
Zurück zum Zitat Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi É, Darras VM, Fekete C, Gereben B. Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus. Endocrinology. 2016;157(3):1211–21.PubMedCrossRef Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi É, Darras VM, Fekete C, Gereben B. Increased thyroid hormone activation accompanies the formation of thyroid hormone-dependent negative feedback in developing chicken hypothalamus. Endocrinology. 2016;157(3):1211–21.PubMedCrossRef
143.
144.
Zurück zum Zitat Rützel H, Schiebler TH. Prenatal and early postnatal development of the glial cells in the median eminence of the rat. Cell Tissue Res. 1980;211(1):117–37.PubMedCrossRef Rützel H, Schiebler TH. Prenatal and early postnatal development of the glial cells in the median eminence of the rat. Cell Tissue Res. 1980;211(1):117–37.PubMedCrossRef
145.
Zurück zum Zitat Altman J, Bayer SA. Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J Comp Neurol. 1978;182(4 Pt 2):995–1015.PubMedCrossRef Altman J, Bayer SA. Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J Comp Neurol. 1978;182(4 Pt 2):995–1015.PubMedCrossRef
147.
Zurück zum Zitat Dearden L, Ozanne SE. Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol. 2015;39:3–16.PubMedCrossRef Dearden L, Ozanne SE. Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol. 2015;39:3–16.PubMedCrossRef
148.
Zurück zum Zitat Ralevski A, Horvath TL. Developmental programming of hypothalamic neuroendocrine systems. Front Neuroendocrinol. 2015;39:52–8.PubMedCrossRef Ralevski A, Horvath TL. Developmental programming of hypothalamic neuroendocrine systems. Front Neuroendocrinol. 2015;39:52–8.PubMedCrossRef
149.
Zurück zum Zitat Aláez C, Calvo R, Obregón MJ, Pascual-Leone AM. Thyroid hormones and 5'-deiodinase activity in neonatal undernourished rats. Endocrinology. 1992;130(2):773–9.PubMed Aláez C, Calvo R, Obregón MJ, Pascual-Leone AM. Thyroid hormones and 5'-deiodinase activity in neonatal undernourished rats. Endocrinology. 1992;130(2):773–9.PubMed
150.
Zurück zum Zitat Ayala-Moreno R, Racotta R, Anguiano B, Aceves C, Quevedo L. Perinatal undernutrition programmes thyroid function in the adult rat offspring. Br J Nutr. 2013;110(12):2207–15.PubMedCrossRef Ayala-Moreno R, Racotta R, Anguiano B, Aceves C, Quevedo L. Perinatal undernutrition programmes thyroid function in the adult rat offspring. Br J Nutr. 2013;110(12):2207–15.PubMedCrossRef
151.
Zurück zum Zitat Kahr MK, Antony KM, DelBeccaro M, Hu M, Aagaard KM, Suter MA. Increasing maternal obesity is associated with alterations in both maternal and neonatal thyroid hormone levels. Clin Endocrinol. 2016;84(4):551–7.CrossRef Kahr MK, Antony KM, DelBeccaro M, Hu M, Aagaard KM, Suter MA. Increasing maternal obesity is associated with alterations in both maternal and neonatal thyroid hormone levels. Clin Endocrinol. 2016;84(4):551–7.CrossRef
152.
Zurück zum Zitat Franco JG, Fernandes TP, Rocha CP, Calviño C, Pazos-Moura CC, Lisboa PC, Moura EG, Trevenzoli IH. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J Physiol. 2012;590(21):5503–18.PubMedPubMedCentralCrossRef Franco JG, Fernandes TP, Rocha CP, Calviño C, Pazos-Moura CC, Lisboa PC, Moura EG, Trevenzoli IH. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J Physiol. 2012;590(21):5503–18.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Lisboa PC, Conceição EP, de Oliveira E, Moura EG. Postnatal overnutrition programs the thyroid hormone metabolism and function in adulthood. J Endocrinol. 2015;226(3):219–26. Lisboa PC, Conceição EP, de Oliveira E, Moura EG. Postnatal overnutrition programs the thyroid hormone metabolism and function in adulthood. J Endocrinol. 2015;226(3):219–26.
154.
Zurück zum Zitat Suter MA, Sangi-Haghpeykar H, Showalter L, Shope C, Hu M, Brown K, Williams S, Harris RA, Grove KL, Lane RH, Aagaard KM. Maternal high-fat diet modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. Mol Endocrinol. 2012;26(12):2071–80.PubMedPubMedCentralCrossRef Suter MA, Sangi-Haghpeykar H, Showalter L, Shope C, Hu M, Brown K, Williams S, Harris RA, Grove KL, Lane RH, Aagaard KM. Maternal high-fat diet modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. Mol Endocrinol. 2012;26(12):2071–80.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Saben J, Kang P, Zhong Y, Thakali KM, Gomez-Acevedo H, Borengasser SJ, Andres A, Badger TM, Shankar K. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta. 2014;35(12):1013–20.PubMedPubMedCentralCrossRef Saben J, Kang P, Zhong Y, Thakali KM, Gomez-Acevedo H, Borengasser SJ, Andres A, Badger TM, Shankar K. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta. 2014;35(12):1013–20.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol. 2014;10(7):391–402.PubMedCrossRef Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol. 2014;10(7):391–402.PubMedCrossRef
157.
Zurück zum Zitat Carbone DL, Zuloaga DG, Lacagnina AF, McGivern RF, Handa RJ. Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav. 2012;108:6–12. Carbone DL, Zuloaga DG, Lacagnina AF, McGivern RF, Handa RJ. Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav. 2012;108:6–12.
158.
Zurück zum Zitat Uribe RM, Zacarias M, Corkidi G, Cisneros M, Charli JL, Joseph-Bravo P. 17β-Oestradiol indirectly inhibits thyrotrophin-releasing hormone expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J Neuroendocrinol. 2009;21(5):439–48.PubMedCrossRef Uribe RM, Zacarias M, Corkidi G, Cisneros M, Charli JL, Joseph-Bravo P. 17β-Oestradiol indirectly inhibits thyrotrophin-releasing hormone expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J Neuroendocrinol. 2009;21(5):439–48.PubMedCrossRef
159.
Zurück zum Zitat Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol. 2014;35(3):285–302.PubMedCrossRef Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol. 2014;35(3):285–302.PubMedCrossRef
160.
Zurück zum Zitat Aréchiga-Ceballos F, Alvarez-Salas E, Matamoros-Trejo G, Amaya MI, García-Luna C, de Gortari P. Pro-TRH and pro-CRF expression in paraventricular nucleus of small litter-reared fasted adult rats. J Endocrinol. 2014;221(1):77–88.PubMedCrossRef Aréchiga-Ceballos F, Alvarez-Salas E, Matamoros-Trejo G, Amaya MI, García-Luna C, de Gortari P. Pro-TRH and pro-CRF expression in paraventricular nucleus of small litter-reared fasted adult rats. J Endocrinol. 2014;221(1):77–88.PubMedCrossRef
161.
Zurück zum Zitat Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol. 2014;26(10):707–23.PubMedCrossRef Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol. 2014;26(10):707–23.PubMedCrossRef
162.
Zurück zum Zitat Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor Gene methylation: a systematic review. Biol Psychiatry. 2016;79(2):87–96.PubMedCrossRef Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor Gene methylation: a systematic review. Biol Psychiatry. 2016;79(2):87–96.PubMedCrossRef
163.
Zurück zum Zitat Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne). 2014;5:–73. Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne). 2014;5:–73.
164.
Zurück zum Zitat Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K, Seckl JR. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci. 2000;20(10):3926–35.PubMed Meaney MJ, Diorio J, Francis D, Weaver S, Yau J, Chapman K, Seckl JR. Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci. 2000;20(10):3926–35.PubMed
165.
Zurück zum Zitat Hellstrom IC, Dhir SK, Diorio JC, Meaney MJ. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1601):2495–510.CrossRef Hellstrom IC, Dhir SK, Diorio JC, Meaney MJ. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1601):2495–510.CrossRef
166.
Zurück zum Zitat Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y, Pérez-Maldonado A, Romero F, Sánchez-Jaramillo E, Charli J-L, Joseph-Bravo P. Neonatal maternal separation alters, in a sex specific manner, the expression of TRH, of TRH-degrading ectoenzyme in the rat hypothalamus, and the response of the thyroid axis to starvation. Endocrinology. 2016;157:32–53. Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y, Pérez-Maldonado A, Romero F, Sánchez-Jaramillo E, Charli J-L, Joseph-Bravo P. Neonatal maternal separation alters, in a sex specific manner, the expression of TRH, of TRH-degrading ectoenzyme in the rat hypothalamus, and the response of the thyroid axis to starvation. Endocrinology. 2016;157:32–53.
167.
Zurück zum Zitat Leach PT, Gould TJ. Thyroid hormone signaling: contribution to neural function, cognition, and relationship to nicotine. Neurosci Biobehav Rev. 2015;57:252–63.PubMedPubMedCentralCrossRef Leach PT, Gould TJ. Thyroid hormone signaling: contribution to neural function, cognition, and relationship to nicotine. Neurosci Biobehav Rev. 2015;57:252–63.PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Lisboa PC, de Oliveira E, Manhães AC, Santos-Silva AP, Pinheiro CR, Younes-Rapozo V, Faustino LC, Ortiga-Carvalho TM, Moura EG. Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny. J Endocrinol. 2015;224(3):315–25.PubMedCrossRef Lisboa PC, de Oliveira E, Manhães AC, Santos-Silva AP, Pinheiro CR, Younes-Rapozo V, Faustino LC, Ortiga-Carvalho TM, Moura EG. Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny. J Endocrinol. 2015;224(3):315–25.PubMedCrossRef
169.
Zurück zum Zitat Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.PubMedCrossRef Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.PubMedCrossRef
170.
Zurück zum Zitat Dishaw LV, Macaulay LJ, Roberts SC, Stapleton HM. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr Opin Pharmacol. 2014;19:125–33.PubMedCrossRef Dishaw LV, Macaulay LJ, Roberts SC, Stapleton HM. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr Opin Pharmacol. 2014;19:125–33.PubMedCrossRef
171.
Zurück zum Zitat Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim Biophys Acta. 2015;1849(2):112–21.PubMedCrossRef Préau L, Fini JB, Morvan-Dubois G, Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim Biophys Acta. 2015;1849(2):112–21.PubMedCrossRef
172.
173.
Zurück zum Zitat Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord 2016 Jan 23. [Epub ahead of print] PubMed Duntas LH, Stathatos N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord 2016 Jan 23. [Epub ahead of print] PubMed
174.
Zurück zum Zitat Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens). 2010;9(1):28–40.CrossRef Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens). 2010;9(1):28–40.CrossRef
175.
Zurück zum Zitat Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, Sjödin A, Yolton K, Lanphear BP, Chen A. Maternal Polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati. USA Environ Health Perspect. 2015;123(10):1079–85.PubMed Vuong AM, Webster GM, Romano ME, Braun JM, Zoeller RT, Hoofnagle AN, Sjödin A, Yolton K, Lanphear BP, Chen A. Maternal Polybrominated diphenyl ether (PBDE) exposure and thyroid hormones in maternal and cord sera: the HOME study, Cincinnati. USA Environ Health Perspect. 2015;123(10):1079–85.PubMed
Metadaten
Titel
Advances in TRH signaling
verfasst von
Patricia Joseph-Bravo
Lorraine Jaimes-Hoy
Jean-Louis Charli
Publikationsdatum
12.08.2016
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 4/2016
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-016-9375-y

Weitere Artikel der Ausgabe 4/2016

Reviews in Endocrine and Metabolic Disorders 4/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.