Skip to main content
Erschienen in:

06.11.2019 | Original Article

Age-related periosteal expansion at femoral neck among elderly women may maintain bending stiffness, but not femoral strength

verfasst von: Y. Luo

Erschienen in: Osteoporosis International | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Summary

Periosteal expansion and bone loss have opposite effects on femur strength. Their combined effect has not been fully understood. Our investigation using a recently developed beam model suggested that periosteal expansion may maintain femur bending stiffness among elderly women, but not help preserve femoral strength and reduce hip fracture risk.

Introduction

Periosteal expansion and bone loss are two accompanying biological phenomena in old population. Their combined effect on bone stiffness, strength, and fracture risk is still not clear, because previous studies have reported contradictory results.

Methods

A recently developed DXA (dual-energy X-ray absorptiometry)-based beam model was applied to study the effect at the femoral neck. We first made a theoretical analysis. Then, a clinical cohort consisting of 961 women (316 hip fractures and 645 controls, age of 75.9 ± 7.1) was used to investigate the associations quantitatively. We investigated (1) correlations of femoral-neck width and bone mineral density with femoral stiffness and strength; (2) correlations of femoral stiffness, strength, and hip fracture risk index with age; (3) associations of femoral stiffness, strength and fracture risk index with actual fracture status, measured by the area under the curve (AUC) and odds ratio (OR).

Results

The investigation results showed that (i) femoral-neck width had stronger correlation with femoral bending stiffness (r = 0.61–0.82, p < 0.001) than with the other stiffness components, while bone mineral density had stronger correlation with axial/shearing stiffness (r = 0.84–0.97, p < 0.001), strength (r = 0.85–0.92, p < 0.001), and fracture risk index (r = −0.61–0.62, p < 0.001) than with bending stiffness. (ii) The association between femoral bending stiffness and age was insignificant (r = − 0.06–0.05, r > 0.05); The associations of axial/shearing stiffness (r = − 0.27–−0.20, p < 0.001), strength (r = − 0.28, p < 0.001), and fracture risk index (r = 0.38, p < 0.001) with age were significant. (iii) Fracture risk index had the strongest association with actual fracture status (AUC = 0.75, OR = 3.19), followed by strength (AUC = 0.74, OR = 2.84) and axial/shearing stiffness (AUC = 0.56–0.65, OR = 2.39–2.49). Femoral bending stiffness had the weakest association (AUC = 0.48–0.69, OR = 1.42–2.09).

Conclusion

We concluded that periosteal expansion may be adequate to maintain femoral bending stiffness among elderly women, but it may not help preserve strength and reduce hip fracture risk.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112PubMedCrossRef Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13:105–112PubMedCrossRef
2.
Zurück zum Zitat Finkelstein JS, Brockwell SE, Mehta V et al (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93:861–868PubMedCrossRef Finkelstein JS, Brockwell SE, Mehta V et al (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93:861–868PubMedCrossRef
3.
Zurück zum Zitat Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334PubMedCrossRef
5.
Zurück zum Zitat Bliuc D, Nguyen ND, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporos Int 26:1331–1339PubMedCrossRef Bliuc D, Nguyen ND, Alarkawi D, Nguyen TV, Eisman JA, Center JR (2015) Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporos Int 26:1331–1339PubMedCrossRef
6.
Zurück zum Zitat Huntjens KMB, Kosar S, van Geel TACM, Geusens PP, Willems P, Kessels A, Winkens B, Brink P, van Helden S (2010) Risk of subsequent fracture and mortality within 5 years after a non-vertebral fracture. Osteoporos Int 21:2075–2082PubMedPubMedCentralCrossRef Huntjens KMB, Kosar S, van Geel TACM, Geusens PP, Willems P, Kessels A, Winkens B, Brink P, van Helden S (2010) Risk of subsequent fracture and mortality within 5 years after a non-vertebral fracture. Osteoporos Int 21:2075–2082PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521PubMedCrossRef Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521PubMedCrossRef
8.
Zurück zum Zitat Berger C, Langsetmo L, Joseph L et al (2008) Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 178:1660–1668PubMedPubMedCentralCrossRef Berger C, Langsetmo L, Joseph L et al (2008) Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 178:1660–1668PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. J Am Med Assoc 302:1573–1579CrossRef Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009) Incidence and mortality of hip fractures in the United States. J Am Med Assoc 302:1573–1579CrossRef
10.
Zurück zum Zitat Kannus P, Parkkari J, Sievänen H, Heinonen A, Vuori I, Järvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SPubMedCrossRef Kannus P, Parkkari J, Sievänen H, Heinonen A, Vuori I, Järvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SPubMedCrossRef
11.
Zurück zum Zitat Smith R, Walker R (1964) Femoral expansion in aging women: implications for osteoporosis and fractures. Science 217:945–948 Smith R, Walker R (1964) Femoral expansion in aging women: implications for osteoporosis and fractures. Science 217:945–948
12.
Zurück zum Zitat Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948PubMedCrossRef Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948PubMedCrossRef
13.
15.
Zurück zum Zitat Schoenau E, Fricke O (2008) Mechanical influences on bone development in children. Eur J Endocrinol 159:S27–S31PubMedCrossRef Schoenau E, Fricke O (2008) Mechanical influences on bone development in children. Eur J Endocrinol 159:S27–S31PubMedCrossRef
16.
Zurück zum Zitat Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550PubMedCrossRef Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550PubMedCrossRef
17.
Zurück zum Zitat McNabb BL, Vittinghoff E, Schwartz AV, Eastell R, Bauer DC, Ensrud K, Rosenberg E, Santora A, Barrett-Connor E, Black DM (2013) BMD changes and predictors of increased bone loss in postmenopausal women after a 5-year course of alendronate. J Bone Miner Res 28:1319–1327PubMedCrossRef McNabb BL, Vittinghoff E, Schwartz AV, Eastell R, Bauer DC, Ensrud K, Rosenberg E, Santora A, Barrett-Connor E, Black DM (2013) BMD changes and predictors of increased bone loss in postmenopausal women after a 5-year course of alendronate. J Bone Miner Res 28:1319–1327PubMedCrossRef
18.
Zurück zum Zitat Beck TJ, Ruff CB, Warden KE, Scott WWJ, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Investig Radiol 25:6–18CrossRef Beck TJ, Ruff CB, Warden KE, Scott WWJ, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Investig Radiol 25:6–18CrossRef
19.
Zurück zum Zitat Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55PubMedCrossRef Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55PubMedCrossRef
20.
Zurück zum Zitat Beck TJ, Looker AC, Mourtada F, Daphtary MM, Ruff CB (2006) Age trends in femur stresses from a simulated fall on the hip among men and women: evidence of homeostatic adaptation underlying the decline in hip BMD. J Bone Miner Res 21:1425–1432PubMedCrossRef Beck TJ, Looker AC, Mourtada F, Daphtary MM, Ruff CB (2006) Age trends in femur stresses from a simulated fall on the hip among men and women: evidence of homeostatic adaptation underlying the decline in hip BMD. J Bone Miner Res 21:1425–1432PubMedCrossRef
21.
Zurück zum Zitat Beck TJ, Ruff CB, Bissessur K (1993) Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int 53(Suppl 1):S41–S46PubMedCrossRef Beck TJ, Ruff CB, Bissessur K (1993) Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int 53(Suppl 1):S41–S46PubMedCrossRef
22.
Zurück zum Zitat Jepsen KJ, Andarawis-Puri N (2012) The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res 27:1916–1926, 2014PubMedCrossRef Jepsen KJ, Andarawis-Puri N (2012) The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res 27:1916–1926, 2014PubMedCrossRef
23.
Zurück zum Zitat Milovanovic P, Adamu U, Simon MJK, Rolvien T, Djuric M, Amling M, Busse B (2015) Age- and sex-specific bone structure patterns portend bone fragility in radii and tibiae in relation to osteodensitometry: a high-resolution peripheral quantitative computed tomography study in 385 individuals. The Journals of Gerontology: Series A 70:1269–1275CrossRef Milovanovic P, Adamu U, Simon MJK, Rolvien T, Djuric M, Amling M, Busse B (2015) Age- and sex-specific bone structure patterns portend bone fragility in radii and tibiae in relation to osteodensitometry: a high-resolution peripheral quantitative computed tomography study in 385 individuals. The Journals of Gerontology: Series A 70:1269–1275CrossRef
24.
Zurück zum Zitat Kozminski KJJ n A, Bigelow EMR, Schlecht SH, Goulet RW, Harlow SD, Cauley JA, Karvonen-Gutierrez C (2017) Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause. J Bone Miner Res 32:1218–1228PubMedCrossRef Kozminski KJJ n A, Bigelow EMR, Schlecht SH, Goulet RW, Harlow SD, Cauley JA, Karvonen-Gutierrez C (2017) Femoral neck external size but not aBMD predicts structural and mass changes for women transitioning through menopause. J Bone Miner Res 32:1218–1228PubMedCrossRef
25.
Zurück zum Zitat Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int 18:495–503PubMedPubMedCentralCrossRef Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int 18:495–503PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413PubMedCrossRef Gullberg B, Johnell O, Kanis JA (1997) World-wide projections for hip fracture. Osteoporos Int 7:407–413PubMedCrossRef
27.
Zurück zum Zitat Banks E, Reeves GK, Beral V, Balkwill A, Liu B, Roddam A (2009) Hip fracture incidence in relation to age, menopausal status, and age at menopause: prospective analysis. PLoS Med 6:e1000181PubMedPubMedCentralCrossRef Banks E, Reeves GK, Beral V, Balkwill A, Liu B, Roddam A (2009) Hip fracture incidence in relation to age, menopausal status, and age at menopause: prospective analysis. PLoS Med 6:e1000181PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Piirtola M, Vahlberg T, Isoaho R, Aarnio P, Kivelä S-L (2007) Incidence of fractures and changes over time among the aged in a Finnish municipality: a population-based 12-year follow-up. Aging Clin Exp Res 19:269–276PubMedCrossRef Piirtola M, Vahlberg T, Isoaho R, Aarnio P, Kivelä S-L (2007) Incidence of fractures and changes over time among the aged in a Finnish municipality: a population-based 12-year follow-up. Aging Clin Exp Res 19:269–276PubMedCrossRef
29.
Zurück zum Zitat Ensrud KE (2013) Epidemiology of fracture risk with advancing age. The Journals of Gerontology: Series A 68:1236–1242CrossRef Ensrud KE (2013) Epidemiology of fracture risk with advancing age. The Journals of Gerontology: Series A 68:1236–1242CrossRef
30.
Zurück zum Zitat Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936PubMedCrossRef Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936PubMedCrossRef
31.
Zurück zum Zitat Luo Y, Yang H (2019) Assessment of hip fracture risk by cross-sectional strain-energy derived from DXA-based beam model. Clin Biomech 63:48–53CrossRef Luo Y, Yang H (2019) Assessment of hip fracture risk by cross-sectional strain-energy derived from DXA-based beam model. Clin Biomech 63:48–53CrossRef
32.
Zurück zum Zitat Luo Y, Sarvi MN, Sun P, Leslie W, Ouyang J (2014) Prediction of impact force in sideways fall of the elderly by DXA-based subject-specific dynamics modeling. International Biomechanics 1:1–14CrossRef Luo Y, Sarvi MN, Sun P, Leslie W, Ouyang J (2014) Prediction of impact force in sideways fall of the elderly by DXA-based subject-specific dynamics modeling. International Biomechanics 1:1–14CrossRef
33.
Zurück zum Zitat Helgason B, Perilli E et al (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146CrossRef Helgason B, Perilli E et al (2008) Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech 23:135–146CrossRef
34.
Zurück zum Zitat Luo Y (2019) Empirical functions for conversion of femur areal and volumetric bone mineral density. Journal of Biomedical and Biological Engineering 39:287–293 Luo Y (2019) Empirical functions for conversion of femur areal and volumetric bone mineral density. Journal of Biomedical and Biological Engineering 39:287–293
35.
Zurück zum Zitat Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24:33–42PubMedCrossRef Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R (2009) Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res 24:33–42PubMedCrossRef
36.
Zurück zum Zitat Michelson JD, Myers A, Jinnah R, Cox Q, Van Natta M (1995) Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clinical Orthopaedics & Related Research 311:129–135 Michelson JD, Myers A, Jinnah R, Cox Q, Van Natta M (1995) Epidemiology of hip fractures among the elderly: risk factors for fracture type. Clinical Orthopaedics & Related Research 311:129–135
37.
Zurück zum Zitat Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMedCrossRef Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304PubMedCrossRef
38.
Zurück zum Zitat Leslie WD, Luo Y, Yang S, Goertzen AL, Ahmed S, Delubac I, Lix LM (2019) Fracture risk indices from DXA-based finite element analysis predict incident fractures independently from FRAX: the Manitoba BMD registry. J Clin Densitom 22:338–345PubMedCrossRef Leslie WD, Luo Y, Yang S, Goertzen AL, Ahmed S, Delubac I, Lix LM (2019) Fracture risk indices from DXA-based finite element analysis predict incident fractures independently from FRAX: the Manitoba BMD registry. J Clin Densitom 22:338–345PubMedCrossRef
39.
Zurück zum Zitat S. Timoshenko and J.N. Goodier. (1951) Theory of elasticity. McGraw-Hill Book Company, Inc.,New York. S. Timoshenko and J.N. Goodier. (1951) Theory of elasticity. McGraw-Hill Book Company, Inc.,New York.
40.
Zurück zum Zitat Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904PubMedPubMedCentralCrossRef Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA (2005) Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res 20:1820–1827PubMedCrossRef Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA (2005) Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res 20:1820–1827PubMedCrossRef
42.
Zurück zum Zitat Gale CR, Cooper C, Sayer AA (2016) Prevalence and risk factors for falls in older men and women: the English Longitudinal Study of Ageing. Age Ageing 45:789–794PubMedPubMedCentralCrossRef Gale CR, Cooper C, Sayer AA (2016) Prevalence and risk factors for falls in older men and women: the English Longitudinal Study of Ageing. Age Ageing 45:789–794PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Durosier C, Hans D, Krieg MA, Schott AM (2006) Prediction and discrimination of osteoporotic hip fracture in postmenopausal women. J Clin Densitom 9:475–495PubMedCrossRef Durosier C, Hans D, Krieg MA, Schott AM (2006) Prediction and discrimination of osteoporotic hip fracture in postmenopausal women. J Clin Densitom 9:475–495PubMedCrossRef
45.
Zurück zum Zitat Nguyen TV, Center JR, Eisman JA (2013) Individualized fracture risk assessment: progresses and challenges. Curr Opin Rheumatol 25:532–541PubMedCrossRef Nguyen TV, Center JR, Eisman JA (2013) Individualized fracture risk assessment: progresses and challenges. Curr Opin Rheumatol 25:532–541PubMedCrossRef
46.
Zurück zum Zitat Luo Y (2016) A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos Int 27:423–439PubMedCrossRef Luo Y (2016) A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos Int 27:423–439PubMedCrossRef
48.
Zurück zum Zitat Nawathe S, Yang H, Fields AJ, Bouxsein ML, Keaveny TM (2015) Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body. J Biomech 48:1264–1269PubMedCrossRef Nawathe S, Yang H, Fields AJ, Bouxsein ML, Keaveny TM (2015) Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body. J Biomech 48:1264–1269PubMedCrossRef
Metadaten
Titel
Age-related periosteal expansion at femoral neck among elderly women may maintain bending stiffness, but not femoral strength
verfasst von
Y. Luo
Publikationsdatum
06.11.2019
Verlag
Springer London
Erschienen in
Osteoporosis International / Ausgabe 2/2020
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-019-05165-6

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Leitlinienkonformes Management thermischer Verletzungen

Thermische Verletzungen gehören zu den schwerwiegendsten Traumen und hinterlassen oft langfristige körperliche und psychische Spuren. Die aktuelle S2k-Leitlinie „Behandlung thermischer Verletzungen im Kindesalter (Verbrennung, Verbrühung)“ bietet eine strukturierte Übersicht über das empfohlene Vorgehen.

Positive Daten für supraskapulären Nervenblock bei Schultersteife

Daten einer aktuellen Metaanalyse sprechen dafür, dass eine Blockade des Nervus suprascapularis bei Schultersteife mit Blick auf Funktion und Schmerzlinderung mindestens so effektiv ist wie eine Physiotherapie oder intraartikulär injizierte Steroide.

Wirbelgleiten: Dem persönlichen Drang zum Versteifen widerstehen!

In einer norwegischen Studie schnitt die alleinige Dekompressions-Op. bei Personen mit Wirbelgleiten auch dann nicht schlechter ab, wenn erfahrene Chirurgen/ Chirurginnen eigentlich für eine zusätzliche Versteifung plädiert hätten.

Nackenschmerzen nach Bandscheibenvorfall: Muskeltraining hilft!

Bei hartnäckigen Schmerzen aufgrund einer zervikalen Radikulopathie schlägt ein Team der Universität Istanbul vor, lokale Steroidinjektionen mit einem speziellen Trainingsprogramm zur Stabilisierung der Nackenmuskulatur zu kombinieren.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.