Skip to main content
main-content

23.02.2018 | Original Article | Ausgabe 4/2018

International Journal of Computer Assisted Radiology and Surgery 4/2018

Agile convolutional neural network for pulmonary nodule classification using CT images

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 4/2018
Autoren:
Xinzhuo Zhao, Liyao Liu, Shouliang Qi, Yueyang Teng, Jianhua Li, Wei Qian
Wichtige Hinweise
Liyao Liu: Joint first author.

Abstract

Objective

To distinguish benign from malignant pulmonary nodules using CT images is critical for their precise diagnosis and treatment. A new Agile convolutional neural network (CNN) framework is proposed to conquer the challenges of a small-scale medical image database and the small size of the nodules, and it improves the performance of pulmonary nodule classification using CT images.

Methods

A hybrid CNN of LeNet and AlexNet is constructed through combining the layer settings of LeNet and the parameter settings of AlexNet. A dataset with 743 CT image nodule samples is built up based on the 1018 CT scans of LIDC to train and evaluate the Agile CNN model. Through adjusting the parameters of the kernel size, learning rate, and other factors, the effect of these parameters on the performance of the CNN model is investigated, and an optimized setting of the CNN is obtained finally.

Results

After finely optimizing the settings of the CNN, the estimation accuracy and the area under the curve can reach 0.822 and 0.877, respectively. The accuracy of the CNN is significantly dependent on the kernel size, learning rate, training batch size, dropout, and weight initializations. The best performance is achieved when the kernel size is set to \(7\times 7\), the learning rate is 0.005, the batch size is 32, and dropout and Gaussian initialization are used.

Conclusions

This competitive performance demonstrates that our proposed CNN framework and the optimization strategy of the CNN parameters are suitable for pulmonary nodule classification characterized by small medical datasets and small targets. The classification model might help diagnose and treat pulmonary nodules effectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

Sichern Sie sich jetzt Ihr e.Med-Abo und sparen Sie 50 %!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2018

International Journal of Computer Assisted Radiology and Surgery 4/2018 Zur Ausgabe
  1. Sie können e.Med Chirurgie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.