Skip to main content
Erschienen in: Radiological Physics and Technology 1/2020

01.03.2020

AI-based computer-aided diagnosis (AI-CAD): the latest review to read first

verfasst von: Hiroshi Fujita

Erschienen in: Radiological Physics and Technology | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

The third artificial intelligence (AI) boom is coming, and there is an inkling that the speed of its evolution is quickly increasing. In games like chess, shogi, and go, AI has already defeated human champions, and the fact that it is able to achieve autonomous driving is also being realized. Under these circumstances, AI has evolved and diversified at a remarkable pace in medical diagnosis, especially in diagnostic imaging. Therefore, this commentary focuses on AI in medical diagnostic imaging and explains the recent development trends and practical applications of computer-aided detection/diagnosis using artificial intelligence, especially deep learning technology, as well as some topics surrounding it.
Fußnoten
1
On December 6, 2018, approval for the software to determine if it is a neoplastic polyp or not with possibility shown as a number in the super-magnifying endoscope was freshly obtained, based on the Pharmaceuticals and Medical Devices Law in Japan. Support vector machine (SVM) type machine learning instead of deep learning is used in this system.
 
2
The American College of Radiology (ACR) Data Science Institute (DSI) has created a new resource for radiology researchers. A complete list of AI algorithms cleared by the FDA related to medical imaging, published on the ACR DSI website, is said to be updated regularly. https://​www.​acrdsi.​org/​DSI-Services/​FDA-Cleared-AI-Algorithms
 
Literatur
1.
Zurück zum Zitat von Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–322.PubMedPubMedCentral von Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–322.PubMedPubMedCentral
2.
Zurück zum Zitat Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.PubMed Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.PubMed
4.
Zurück zum Zitat Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. IEEE Access. 2018;6:9375–89. Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. IEEE Access. 2018;6:9375–89.
5.
Zurück zum Zitat Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1–e36.PubMed Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1–e36.PubMed
6.
Zurück zum Zitat Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.PubMed Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.PubMed
7.
Zurück zum Zitat Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.PubMed Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.PubMed
8.
Zurück zum Zitat Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent. 2019;49(1):1–7.PubMedPubMedCentral Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent. 2019;49(1):1–7.PubMedPubMedCentral
9.
Zurück zum Zitat Lee G, Fujita H. Deep learning in medical image analysis: challenges and applications. Cham: Springer; 2020 (in press). Lee G, Fujita H. Deep learning in medical image analysis: challenges and applications. Cham: Springer; 2020 (in press).
10.
Zurück zum Zitat Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–21111.PubMedPubMedCentral Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–21111.PubMedPubMedCentral
11.
Zurück zum Zitat Gao Y, Geras KJ, Lewin AA, Moy L. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence. AJR Am J Roentgenol. 2019;212:300–7.PubMedPubMedCentral Gao Y, Geras KJ, Lewin AA, Moy L. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence. AJR Am J Roentgenol. 2019;212:300–7.PubMedPubMedCentral
12.
Zurück zum Zitat Freer TW, Ulissey MJ. Screening mammography with computer aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220(3):781–6.PubMed Freer TW, Ulissey MJ. Screening mammography with computer aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220(3):781–6.PubMed
13.
Zurück zum Zitat Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D'Orsi C, Berns EA, Cutter G, Hendrick RE, Barlow WE, Elmore JG. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356(14):1399–409.PubMedPubMedCentral Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D'Orsi C, Berns EA, Cutter G, Hendrick RE, Barlow WE, Elmore JG. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356(14):1399–409.PubMedPubMedCentral
14.
Zurück zum Zitat Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Breast cancer surveillance consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37.PubMedPubMedCentral Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Breast cancer surveillance consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37.PubMedPubMedCentral
15.
Zurück zum Zitat Kobli A, Jha S. Why CAD failed in mammography. J Am Coll Radiol. 2018;15(3):535–7. Kobli A, Jha S. Why CAD failed in mammography. J Am Coll Radiol. 2018;15(3):535–7.
16.
Zurück zum Zitat Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017;44(10):5221–333.PubMed Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017;44(10):5221–333.PubMed
17.
Zurück zum Zitat Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, Back T, Chopra R, Pontikos N, Kern C, Moraes G, Schmid MK, Sim D, Balaskas K, Bachmann LM, Denniston AK, Keane PA. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 2019;1(5):e232–e242242.PubMed Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, Back T, Chopra R, Pontikos N, Kern C, Moraes G, Schmid MK, Sim D, Balaskas K, Bachmann LM, Denniston AK, Keane PA. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 2019;1(5):e232–e242242.PubMed
21.
Zurück zum Zitat Dunnmon J, Yi D, Langlots CP, Ré C, Rubin DL, Lungren MP. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology. 2019;290(2):537–44.PubMed Dunnmon J, Yi D, Langlots CP, Ré C, Rubin DL, Lungren MP. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology. 2019;290(2):537–44.PubMed
22.
Zurück zum Zitat Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinform. 2019;20(Suppl 11):281. Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinform. 2019;20(Suppl 11):281.
24.
Zurück zum Zitat Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. 2016;3(3):034501. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. 2016;3(3):034501.
25.
Zurück zum Zitat Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43:6654–66.PubMedPubMedCentral Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43:6654–66.PubMedPubMedCentral
26.
Zurück zum Zitat Kim M, Lee H, Song K, Sehyo Y, Ramaraj P, Lee C, Baik J, Do S. GrayNet: a versatile base model for practical deep learning CT applications. In: Proc. of Conference on Machine Intelligence in Medical Imaging (C-MIMI), 2-page extended abstract is available from C-MIMI 2019 website, Austin, TX, Sep. 22–23, 2019. Kim M, Lee H, Song K, Sehyo Y, Ramaraj P, Lee C, Baik J, Do S. GrayNet: a versatile base model for practical deep learning CT applications. In: Proc. of Conference on Machine Intelligence in Medical Imaging (C-MIMI), 2-page extended abstract is available from C-MIMI 2019 website, Austin, TX, Sep. 22–23, 2019.
29.
Zurück zum Zitat Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.PubMed Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.PubMed
30.
Zurück zum Zitat Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31.
31.
Zurück zum Zitat Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Imaizumi K, Fujita H. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed Res Int. 2019;9:6051939. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Imaizumi K, Fujita H. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed Res Int. 2019;9:6051939.
34.
Zurück zum Zitat Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, Rosen B, Rubin DL, Kalpathy-Cramer J. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25(8):945–54.PubMedPubMedCentral Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, Rosen B, Rubin DL, Kalpathy-Cramer J. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25(8):945–54.PubMedPubMedCentral
36.
Zurück zum Zitat Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation, Lecture notes in computer science book series (Volume 11383). Brainlesion. 2019;11383:92–104.PubMedPubMedCentral Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation, Lecture notes in computer science book series (Volume 11383). Brainlesion. 2019;11383:92–104.PubMedPubMedCentral
37.
Zurück zum Zitat Beyer F, Zierott L, Fallenberg EM, Juergens KU, Stoeckel J, Heindel W, Wormanns D. Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur Radiol. 2007;17(11):2941–7.PubMed Beyer F, Zierott L, Fallenberg EM, Juergens KU, Stoeckel J, Heindel W, Wormanns D. Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur Radiol. 2007;17(11):2941–7.PubMed
38.
Zurück zum Zitat Samulski M, Hupse R, Boetes C, Mus RDM, den Heeten GJ, Karssemeijer N. Using computer-aided detection in mammography as a decision support. Eur Radiol. 2010;20(10):2323–30.PubMedPubMedCentral Samulski M, Hupse R, Boetes C, Mus RDM, den Heeten GJ, Karssemeijer N. Using computer-aided detection in mammography as a decision support. Eur Radiol. 2010;20(10):2323–30.PubMedPubMedCentral
39.
Zurück zum Zitat Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Ritse Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305–14.PubMed Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Ritse Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305–14.PubMed
43.
Zurück zum Zitat Goldenberg R, Peled N. Computer-aided simple triage. Int J Comput Assist Radiol Surg. 2011;6(5):705–11.PubMed Goldenberg R, Peled N. Computer-aided simple triage. Int J Comput Assist Radiol Surg. 2011;6(5):705–11.PubMed
44.
Zurück zum Zitat Muramatsu C. Overview of subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.PubMed Muramatsu C. Overview of subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.PubMed
45.
Zurück zum Zitat Owais M, Arsalan M, Choi J, Park KR. Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J Clin Med. 2019;8(4):462.PubMedCentral Owais M, Arsalan M, Choi J, Park KR. Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J Clin Med. 2019;8(4):462.PubMedCentral
46.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.PubMed
47.
Zurück zum Zitat Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44(6):1960–84. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44(6):1960–84.
48.
Zurück zum Zitat Kai C, Uchiyama Y, Shiraishi J, Fujita H, Doi K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol. 2018;11(3):265–73.PubMed Kai C, Uchiyama Y, Shiraishi J, Fujita H, Doi K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol. 2018;11(3):265–73.PubMed
49.
Zurück zum Zitat Yoon H-J, Ramanathan A, Alamudun F, Tourassi G. Deep radiogenomics for predicting clinical phenotypes in invasive breast cancer. In: Proc. SPIE 10718, 14th International Workshop on Breast Imaging (IWBI 2018), 2018. p. 107181H. Yoon H-J, Ramanathan A, Alamudun F, Tourassi G. Deep radiogenomics for predicting clinical phenotypes in invasive breast cancer. In: Proc. SPIE 10718, 14th International Workshop on Breast Imaging (IWBI 2018), 2018. p. 107181H.
50.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMed Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMed
51.
Zurück zum Zitat Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMed Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMed
52.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.PubMedPubMedCentral Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.PubMedPubMedCentral
53.
Zurück zum Zitat Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L. Reader study level-I and level-II Groups. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.PubMed Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L. Reader study level-I and level-II Groups. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.PubMed
54.
Zurück zum Zitat Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210. Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.
55.
Zurück zum Zitat Mayo RC, Kent D, Sen LC, Kapoor M, Leung JWT, Watanabe AT. Reduction of false-positive markings on mammograms: a retrospective comparison study using artificial intelligence-base CAD. J Dig Imag. 2019;32(4):618–24. Mayo RC, Kent D, Sen LC, Kapoor M, Leung JWT, Watanabe AT. Reduction of false-positive markings on mammograms: a retrospective comparison study using artificial intelligence-base CAD. J Dig Imag. 2019;32(4):618–24.
56.
Zurück zum Zitat Aboutalib SS, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clin Cancer Res. 2018;24(23):5902–9.PubMedPubMedCentral Aboutalib SS, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clin Cancer Res. 2018;24(23):5902–9.PubMedPubMedCentral
57.
Zurück zum Zitat Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzebski S, Fevry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Pysarenko HTK, Lewin A, Lee J, Airola K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging. 2019. https://doi.org/10.1109/TMI.2019.2945514.CrossRefPubMedPubMedCentral Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzebski S, Fevry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Pysarenko HTK, Lewin A, Lee J, Airola K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging. 2019. https://​doi.​org/​10.​1109/​TMI.​2019.​2945514.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Hwang EJ, Park S, Jin KN. Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095.PubMedPubMedCentral Hwang EJ, Park S, Jin KN. Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095.PubMedPubMedCentral
59.
Zurück zum Zitat Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–61.PubMed Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–61.PubMed
60.
Zurück zum Zitat Abràmoff MD, Lavin PT, Birch M, Shah NA, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med. 2018;1:39.PubMedPubMedCentral Abràmoff MD, Lavin PT, Birch M, Shah NA, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med. 2018;1:39.PubMedPubMedCentral
61.
Zurück zum Zitat Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, Mahendiran T, Moraes G, Shamdas M, Kern C, Ledsam JR, Schmid MK, Balaskas K, Topol EJ, Bachmann LM, Keane PA, Denniston AK. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271–e297297.PubMed Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, Mahendiran T, Moraes G, Shamdas M, Kern C, Ledsam JR, Schmid MK, Balaskas K, Topol EJ, Bachmann LM, Keane PA, Denniston AK. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271–e297297.PubMed
62.
Zurück zum Zitat Langlotz C, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD, Wang G, Kandarpa K. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.PubMed Langlotz C, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD, Wang G, Kandarpa K. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.PubMed
63.
Zurück zum Zitat Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipandle PV, Brink JA, Dreyer KJ. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.PubMed Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipandle PV, Brink JA, Dreyer KJ. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.PubMed
Metadaten
Titel
AI-based computer-aided diagnosis (AI-CAD): the latest review to read first
verfasst von
Hiroshi Fujita
Publikationsdatum
01.03.2020
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 1/2020
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00552-4

Weitere Artikel der Ausgabe 1/2020

Radiological Physics and Technology 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.