Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 11/2020

29.09.2020 | Opinion

AI in the treatment of fertility: key considerations

verfasst von: Jason Swain, Matthew Tex VerMilyea, Marcos Meseguer, Diego Ezcurra, Fertility AI Forum Group

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Abstract

Artificial intelligence (AI) has been proposed as a potential tool to help address many of the existing problems related with empirical or subjective assessments of clinical and embryological decision points during the treatment of infertility. AI technologies are reviewed and potential areas of implementation of algorithms are discussed, highlighting the importance of following a proper path for the development and validation of algorithms, including regulatory requirements, and the need for ecosystems containing enough quality data to generate it. As evidenced by the consensus of a group of experts in fertility if properly developed, it is believed that AI algorithms may help practitioners from around the globe to standardize, automate, and improve IVF outcomes for the benefit of patients. Collaboration is required between AI developers and healthcare professionals to make this happen.
Literatur
1.
Zurück zum Zitat European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE), Calhaz-Jorge C, et al. Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016;31:1638–52.CrossRef European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE), Calhaz-Jorge C, et al. Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016;31:1638–52.CrossRef
2.
Zurück zum Zitat de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod. 2010;25:1851–62.CrossRefPubMed de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod. 2010;25:1851–62.CrossRefPubMed
3.
Zurück zum Zitat Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, et al. International committee for monitoring assisted reproductive technology: world report on assisted reproductive technology, 2011. Fertil Steril. 2018;110:1067–80.CrossRefPubMed Adamson GD, de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, et al. International committee for monitoring assisted reproductive technology: world report on assisted reproductive technology, 2011. Fertil Steril. 2018;110:1067–80.CrossRefPubMed
5.
Zurück zum Zitat Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36:591–600.CrossRefPubMed Curchoe CL, Bormann CL. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36:591–600.CrossRefPubMed
6.
Zurück zum Zitat Letterie GS, MacDonald A. A computerized decision –support system for day to day management of ovarian stimulation cycles during in vitro fertilization. Fertil Steril. 2019;112:e28.CrossRef Letterie GS, MacDonald A. A computerized decision –support system for day to day management of ovarian stimulation cycles during in vitro fertilization. Fertil Steril. 2019;112:e28.CrossRef
8.
Zurück zum Zitat Hoo-Chang S, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imag. 2016;35:1285–98.CrossRef Hoo-Chang S, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imag. 2016;35:1285–98.CrossRef
9.
Zurück zum Zitat Turing AM. On computable numbers, with an application to the entscheidungsproblem. a correction. Proc Lond Math Soc. 1938;s2-43:544–6.CrossRef Turing AM. On computable numbers, with an application to the entscheidungsproblem. a correction. Proc Lond Math Soc. 1938;s2-43:544–6.CrossRef
10.
Zurück zum Zitat Turing AM. Computing machinery and intelligence. Mind. 1950;236:433–60.CrossRef Turing AM. Computing machinery and intelligence. Mind. 1950;236:433–60.CrossRef
11.
Zurück zum Zitat Mcculloch W, Pitts W. A logical calculus of the ideas immanent in nerous activity (reprinted from 1943). Bull Math Biol. 1990;52:99–115.CrossRefPubMed Mcculloch W, Pitts W. A logical calculus of the ideas immanent in nerous activity (reprinted from 1943). Bull Math Biol. 1990;52:99–115.CrossRefPubMed
13.
Zurück zum Zitat The AI effect. How artificial intelligence is making health care more human. MIT Technology reviews insights. 2019. The AI effect. How artificial intelligence is making health care more human. MIT Technology reviews insights. 2019.
14.
Zurück zum Zitat Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34:1011–8.CrossRefPubMed Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34:1011–8.CrossRefPubMed
15.
Zurück zum Zitat Shen D, Wu G, Suk H. Deep learning in medical image analysis. Physiol Behav. 2017;176:139–48.CrossRef Shen D, Wu G, Suk H. Deep learning in medical image analysis. Physiol Behav. 2017;176:139–48.CrossRef
16.
Zurück zum Zitat Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.CrossRefPubMed Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.CrossRefPubMed
17.
Zurück zum Zitat Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24:1337–41.CrossRefPubMed Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24:1337–41.CrossRefPubMed
18.
Zurück zum Zitat Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical work flow integration. NPJ Digit Med. 2017;1:9. https://doi.org/10.1038/s41746-017-0015-z.CrossRef Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical work flow integration. NPJ Digit Med. 2017;1:9. https://​doi.​org/​10.​1038/​s41746-017-0015-z.CrossRef
19.
Zurück zum Zitat Chilamkurthy S, et al. Articles Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;6736:1–9. Chilamkurthy S, et al. Articles Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;6736:1–9.
20.
Zurück zum Zitat Nam JG, Park S, Hwang EJ, Lee JH. Development and validation of deep learning – based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290:218–28.CrossRefPubMed Nam JG, Park S, Hwang EJ, Lee JH. Development and validation of deep learning – based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290:218–28.CrossRefPubMed
21.
Zurück zum Zitat Singh R, et al. Deep learning in chest radiography: detection of findings and presence of change. PLoS ONE. 2018;13(13):1–12. Singh R, et al. Deep learning in chest radiography: detection of findings and presence of change. PLoS ONE. 2018;13(13):1–12.
22.
Zurück zum Zitat Lehman CD, et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology. 2018;00:1–7. Lehman CD, et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology. 2018;00:1–7.
23.
Zurück zum Zitat Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA. 2018;115:11591–6.CrossRefPubMed Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA. 2018;115:11591–6.CrossRefPubMed
24.
Zurück zum Zitat Bejnordi BE, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318:2199–210.CrossRef Bejnordi BE, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318:2199–210.CrossRef
26.
Zurück zum Zitat Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74.CrossRefPubMed Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74.CrossRefPubMed
27.
Zurück zum Zitat Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol. 2018;42:1636–46.CrossRefPubMed Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol. 2018;42:1636–46.CrossRefPubMed
28.
Zurück zum Zitat Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence – based breast cancer Nodal. Arch Pathol Lab Med. 2019;143:859–68.CrossRefPubMed Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence – based breast cancer Nodal. Arch Pathol Lab Med. 2019;143:859–68.CrossRefPubMed
29.
Zurück zum Zitat Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nat Publ Group. 2017;542:115–8. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nat Publ Group. 2017;542:115–8.
30.
Zurück zum Zitat Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29:1836–42.CrossRefPubMed Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29:1836–42.CrossRefPubMed
31.
Zurück zum Zitat Han SS, Kim MS, Lim W, Park GH, Park I. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. 2018;138:1529–38.CrossRefPubMed Han SS, Kim MS, Lim W, Park GH, Park I. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. 2018;138:1529–38.CrossRefPubMed
32.
Zurück zum Zitat Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;94043:1–9. Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;94043:1–9.
34.
Zurück zum Zitat Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Mehrotra A. Evaluation of artificial intelligence – based grading of diabetic retinopathy in primary care. JAMA. 2018;1:1–6. Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Mehrotra A. Evaluation of artificial intelligence – based grading of diabetic retinopathy in primary care. JAMA. 2018;1:1–6.
35.
Zurück zum Zitat Long E, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;0024:1–8. Long E, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;0024:1–8.
36.
Zurück zum Zitat De Fauw J, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–54.CrossRefPubMed De Fauw J, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–54.CrossRefPubMed
37.
Zurück zum Zitat Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135:1170–6.CrossRefPubMed Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135:1170–6.CrossRefPubMed
38.
Zurück zum Zitat Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136:803–10.CrossRefPubMed Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136:803–10.CrossRefPubMed
39.
Zurück zum Zitat Kermany DS, Goldbaum M, Cai W, Lewis MA. Identifying medical diagnoses and treatable diseases by image-based deep learning resource. Cell. 2018;172:1122–1131.e1129.CrossRefPubMed Kermany DS, Goldbaum M, Cai W, Lewis MA. Identifying medical diagnoses and treatable diseases by image-based deep learning resource. Cell. 2018;172:1122–1131.e1129.CrossRefPubMed
40.
Zurück zum Zitat Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med. 2018;169:357–66.CrossRefPubMed Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med. 2018;169:357–66.CrossRefPubMed
41.
Zurück zum Zitat Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018;2:741–8.CrossRefPubMed Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018;2:741–8.CrossRefPubMed
43.
Zurück zum Zitat Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice feasibility and diagnostic accuracy. Circulation. 2018;138:1623–35.CrossRefPubMed Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice feasibility and diagnostic accuracy. Circulation. 2018;138:1623–35.CrossRefPubMed
44.
Zurück zum Zitat Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2019;180:373–81.CrossRefPubMed Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2019;180:373–81.CrossRefPubMed
45.
Zurück zum Zitat Celi LA, Csete M, Stone D. Optimal data systems: the future of clinical predictions and decision support. Curr Opin Crit Care. 2014;20:573–80.CrossRefPubMed Celi LA, Csete M, Stone D. Optimal data systems: the future of clinical predictions and decision support. Curr Opin Crit Care. 2014;20:573–80.CrossRefPubMed
46.
Zurück zum Zitat Hee, K. Is data quality enough for a clinical decision?: apply machine learning and avoid bias. Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017 2018-Janua, 2612–2619. 2017. Hee, K. Is data quality enough for a clinical decision?: apply machine learning and avoid bias. Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017 2018-Janua, 2612–2619. 2017.
48.
Zurück zum Zitat Bellman RE. Dynamic Programming: Princeton University Press; 2010. Bellman RE. Dynamic Programming: Princeton University Press; 2010.
49.
Zurück zum Zitat Cho J et al. How much data is needed to train a medical image deep learning system to achieve neces-sary high accuracy. Conf Pap ICLR 2016 HOW. 2016. Cho J et al. How much data is needed to train a medical image deep learning system to achieve neces-sary high accuracy. Conf Pap ICLR 2016 HOW. 2016.
50.
Zurück zum Zitat Hestness J et al. Deep learning scaling is predictable, empirically. arXiv:1712.00409. 2017. Hestness J et al. Deep learning scaling is predictable, empirically. arXiv:1712.00409. 2017.
51.
Zurück zum Zitat Hagemann BR, Leclerc J. Precision regulation for artificial intelligence. IBM Policy Lab 1–5. Hagemann BR, Leclerc J. Precision regulation for artificial intelligence. IBM Policy Lab 1–5.
Metadaten
Titel
AI in the treatment of fertility: key considerations
verfasst von
Jason Swain
Matthew Tex VerMilyea
Marcos Meseguer
Diego Ezcurra
Fertility AI Forum Group
Publikationsdatum
29.09.2020
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 11/2020
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-020-01950-z

Weitere Artikel der Ausgabe 11/2020

Journal of Assisted Reproduction and Genetics 11/2020 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.