Skip to main content
main-content

01.12.2017 | Research article | Ausgabe 1/2017 Open Access

Journal of Orthopaedic Surgery and Research 1/2017

All-polyethylene tibial components in distal femur limb-salvage surgery: a finite element analysis based on promising clinical outcomes

Zeitschrift:
Journal of Orthopaedic Surgery and Research > Ausgabe 1/2017
Autoren:
Fan Tang, Yong Zhou, Wenli Zhang, Li Min, Rui Shi, Yi Luo, Hong Duan, Chongqi Tu

Abstract

Background

Whether all-polyethylene tibial (APT) components are beneficial to patients who received distal femur limb-salvage surgery lacks high-quality clinical follow-up and mechanical evidence. This study aimed to investigate the biomechanics of the distal femur reconstructed with APT tumor knee prostheses using finite element (FE) analysis based on our previous, promising clinical outcome.

Methods

Three-dimensional FE models that use APT and metal-backed tibial (MBT) prostheses to reconstruct distal femoral bone defects were developed and input into the Abaqus FEA software version 6.10.1. Mesh refinement tests and gait simulation with a single foot both in the upright and 15°-flexion positions with mechanical loading were conducted. Stress distribution analysis was compared between APT and MBT at the two static positions.

Results

For both prosthesis types, the stress was concentrated on the junction of the stem and shaft, and the maximum stress in the femoral axis base was more than 100 Mpa. The stress on the tibial surface was relatively distributed, which was 1–19 MPa. The stress on the tibial bone-cement layer of the APT prosthesis was approximately 20 times higher than that on the MBT prosthesis in the same region. The stress on the proximal tibial cancellous bone and cortical bone of the APT prosthesis was 3–5 times greater than that of the MBT prosthesis, and it was more distributed.

Conclusions

Although the stress of bone-cement around the APT component is relatively high, the stress was better distributed at the polyethylene-cement-bone interface in APT than in MBT prosthesis, which effectively protects the proximal tibia in distal femur tumor knee prosthesis replacement. These results should be considered when selecting the appropriate tibial component for a patient, especially under the foreseeable conditions of osteoporosis.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Journal of Orthopaedic Surgery and Research 1/2017 Zur Ausgabe

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Orthopädie und Unfallchirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise