Skip to main content
Erschienen in: Clinical Orthopaedics and Related Research® 6/2016

28.10.2015 | Symposium: Current Issues in Orthopaedic Trauma: Tribute to Clifford H. Turen

Allogeneic and Autogenous Bone Grafts Are Affected by Historical Donor Environmental Exposure

verfasst von: Caleb Behrend, MD, Jonathon Carmouche, MD, Paul W. Millhouse, MD, Lauren Ritter, MPH, Joseph Moskal, MD, Paul Rubery, MD, Edward Puzas, PhD

Erschienen in: Clinical Orthopaedics and Related Research® | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Bone graft materials are routinely evaluated for infectious agents; however, data regarding contamination of bone graft from environmental exposure of the donors to osteotoxic substances such as lead are not routinely available. In animal models, stored lead in bone has been shown to impair fracture healing and osteocyte function. In clinical studies, lead is linked to skeletal disease at relatively low concentrations. Presumably the levels of lead in allografts mirror the level of lead in bone in the population; however, the degree to which processing might decrease this and the frequency with which potentially osteotoxic levels appear in bone grafts have not been studied.

Questions/purposes

(1) Does processing of donor bone for allografts result in lower concentrations of lead in commercial allograft when compared with autologous bone graft; and (2) what proportion of bone grafts contain potentially osteotoxic levels of lead from > 2.0 to 20.0 µg/g corresponding to environmental exposure?

Methods

Allograft from commercial sources and autologous bone graft materials were examined for lead content using ICP- atomic absorption spectrophotometric analysis. We analyzed bone graft specimens from 42 donors, including 26 corticocancellous tibial specimens from commercially available bone graft materials and 16 autograft corticocancellous tibial specimens. Lead levels were determined for the cortical (n = 42) and cancellous (n = 42) portions of each specimen. For quality control, all instruments, plastic and glassware, were regularly tested for lead contamination by atomic absorption spectrophotometry throughout the experiments. In addition, spectrophotometer calibration was verified using Standard Reference Material 1486 bone meal (NIST, Gaithersburg, MD, USA). Descriptive statistical analysis was performed using SPSS 20 (SPSS Inc, Chicago, IL, USA). Using these techniques, a lead level > 2 µg/g to 20 µg/g corresponds to some degree of environmental exposure to lead.

Results

With the numbers available in the present study, there were no differences in mean lead level between commercial bone graft materials and autogenous bone graft, 2.1 µg/g (95% confidence interval [CI], 1.6–3.3 µg/g) versus 2.0 µg/g (95% CI, 1.0–4.5 µg/g; p = 0.86). The range for all tested samples varied from < 0.1 to 5.0 µg/g. Likewise, there were no differences in mean lead level between cortical bone grafts, which contained 2.2 µg/g (95% CI, 1.5–3.7 µg/g), and cancellous grafts, which contained 1.9 µg/g (95% CI, 1.2–3.4 µg/g; p = 0.58). Thirty-eight percent (16 of 42) of the specimens had levels between 2.0 µg/g and 20 µg/g within a range expected for individuals with known environmental exposure to lead.

Conclusions

This study demonstrates that lead is present in up to one-third of tibial allograft and autograft bone specimens at potentially osteotoxic levels regardless of the source or screening. Further research is needed to delineate the relationship with nonunion or pseudoarthrosis after procedures in which allograft is used. In addition, further study would examine concentrations of lead and other environmental contaminants in other graft types.

Clinical Relevance

Comparable levels of lead exposure have been associated with toxic effects on skeletal tissue. Further study of bone graft used in fusion procedures and other procedures is necessary to define the magnitude of osteotoxic effects in the setting of fracture care or fusion procedures.
Literatur
2.
Zurück zum Zitat Auederheide AC, Wittmers LE, Rapp G, Wallgren J. Anthropological applications of skeletal lead analysis. Am Anthropol. 1988;90:931–936.CrossRef Auederheide AC, Wittmers LE, Rapp G, Wallgren J. Anthropological applications of skeletal lead analysis. Am Anthropol. 1988;90:931–936.CrossRef
3.
Zurück zum Zitat Beier EE, Maher JR, Sheu T-J, Cory-Slechta DA, Berger AJ, Zuscik MJ, Puzas JE. Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. Environ Health Perspect. 2013;121:97–104.CrossRefPubMedPubMedCentral Beier EE, Maher JR, Sheu T-J, Cory-Slechta DA, Berger AJ, Zuscik MJ, Puzas JE. Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. Environ Health Perspect. 2013;121:97–104.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Berglund M, Akesson A, Bjellerup P, Vahter M. Metal-bone interactions. Toxicol Lett. 2000;112–113:219–225.CrossRefPubMed Berglund M, Akesson A, Bjellerup P, Vahter M. Metal-bone interactions. Toxicol Lett. 2000;112–113:219–225.CrossRefPubMed
5.
Zurück zum Zitat Campbell JR, Rosier RN, Novotny L, Puzas JE. The association between environmental lead exposure and bone density in children. Environ Health Perspect. 2004;112:1200–1203.CrossRefPubMedPubMedCentral Campbell JR, Rosier RN, Novotny L, Puzas JE. The association between environmental lead exposure and bone density in children. Environ Health Perspect. 2004;112:1200–1203.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Carmouche JJ, Puzas JE, Zhang X, Tiyapatanaputi P, Cory-Slechta DA, Gelein R, Zuscik M, Rosier RN, Boyce BF, O’Keefe RJ, Schwarz EM. Lead exposure inhibits fracture healing and is associated with increased chondrogenesis, delay in cartilage mineralization, and a decrease in osteoprogenitor frequency. Environ Health Perspect. 2005;113:749–755.CrossRefPubMedPubMedCentral Carmouche JJ, Puzas JE, Zhang X, Tiyapatanaputi P, Cory-Slechta DA, Gelein R, Zuscik M, Rosier RN, Boyce BF, O’Keefe RJ, Schwarz EM. Lead exposure inhibits fracture healing and is associated with increased chondrogenesis, delay in cartilage mineralization, and a decrease in osteoprogenitor frequency. Environ Health Perspect. 2005;113:749–755.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–658.CrossRefPubMed De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–658.CrossRefPubMed
8.
Zurück zum Zitat Escribano A, Revilla M, Hernández ER, Seco C, González-Riola J, Villa LF, Rico H. Effect of lead on bone development and bone mass: a morphometric, densitometric, and histomorphometric study in growing rats. Calcif Tissue Int. 1997;60:200–203.CrossRefPubMed Escribano A, Revilla M, Hernández ER, Seco C, González-Riola J, Villa LF, Rico H. Effect of lead on bone development and bone mass: a morphometric, densitometric, and histomorphometric study in growing rats. Calcif Tissue Int. 1997;60:200–203.CrossRefPubMed
9.
Zurück zum Zitat Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, American Academy of Orthopaedic Surgeons. The Committee on Biological Implants. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83(Suppl 2):98–103.PubMed Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, American Academy of Orthopaedic Surgeons. The Committee on Biological Implants. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001;83(Suppl 2):98–103.PubMed
10.
Zurück zum Zitat Hicks DG, O’Keefe RJ, Reynolds KJ, Cory-Slechta DA, Puzas JE, Judkins A, Rosier RN. Effects of lead on growth plate chondrocyte phenotype. Toxicol Appl Pharmacol. 1996;140:164–172.CrossRefPubMed Hicks DG, O’Keefe RJ, Reynolds KJ, Cory-Slechta DA, Puzas JE, Judkins A, Rosier RN. Effects of lead on growth plate chondrocyte phenotype. Toxicol Appl Pharmacol. 1996;140:164–172.CrossRefPubMed
11.
Zurück zum Zitat Hoppin JA, Ryan PB, Hu H, Aro AC. Bone lead levels and delinquent behavior. JAMA. 1996;275:1727; author reply 1728. Hoppin JA, Ryan PB, Hu H, Aro AC. Bone lead levels and delinquent behavior. JAMA. 1996;275:1727; author reply 1728.
12.
Zurück zum Zitat Kafourou A, Touloumi G, Makropoulos V, Loutradi A, Papanagiotou A, Hatzakis A. Effects of lead on the somatic growth of children. Arch Environ Health. 1997;52:377–383.CrossRefPubMed Kafourou A, Touloumi G, Makropoulos V, Loutradi A, Papanagiotou A, Hatzakis A. Effects of lead on the somatic growth of children. Arch Environ Health. 1997;52:377–383.CrossRefPubMed
13.
Zurück zum Zitat Lanocha N, Kalisińska E, Kosik-Bogacka D, Budis H, Sokołowski S, Bohatyrewicz A. Comparison of concentrations of lead and cadmium in various parts of the femur head in patients after arthroplasty of the hip joint in northwest Poland. Biomed Environ Sci. 2012;25:577–582.PubMed Lanocha N, Kalisińska E, Kosik-Bogacka D, Budis H, Sokołowski S, Bohatyrewicz A. Comparison of concentrations of lead and cadmium in various parts of the femur head in patients after arthroplasty of the hip joint in northwest Poland. Biomed Environ Sci. 2012;25:577–582.PubMed
14.
Zurück zum Zitat Lanocha N, Kalisinska E, Kosik-Bogacka DI, Budis H, Sokolowski S, Bohatyrewicz A, Lanocha A. The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery. Ann Agric Environ Med. 2013;20:487–493.PubMed Lanocha N, Kalisinska E, Kosik-Bogacka DI, Budis H, Sokolowski S, Bohatyrewicz A, Lanocha A. The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery. Ann Agric Environ Med. 2013;20:487–493.PubMed
15.
Zurück zum Zitat Long GJ, Rosen JF, Pounds JG. Lead impairs the production of osteocalcin by rat osteosarcoma (ROS 17/2.8) cells. Toxicol Appl Pharmacol. 1990;106:270–277.CrossRefPubMed Long GJ, Rosen JF, Pounds JG. Lead impairs the production of osteocalcin by rat osteosarcoma (ROS 17/2.8) cells. Toxicol Appl Pharmacol. 1990;106:270–277.CrossRefPubMed
16.
Zurück zum Zitat Miyahara T, Komiyama H, Miyanishi A, Matsumoto M, Xue-Ya W, Takata M, Takata S, Nagai M, Kozuka H, Yokoyama K. Effects of lead on osteoclast-like cell formation in mouse bone marrow cell cultures. Calcif Tissue Int. 1994;54:165–169.CrossRefPubMed Miyahara T, Komiyama H, Miyanishi A, Matsumoto M, Xue-Ya W, Takata M, Takata S, Nagai M, Kozuka H, Yokoyama K. Effects of lead on osteoclast-like cell formation in mouse bone marrow cell cultures. Calcif Tissue Int. 1994;54:165–169.CrossRefPubMed
17.
Zurück zum Zitat Parsons PJ, Slavin W. A rapid Zeeman graphite furnace atomic absorption spectrometric method for the determination of lead in blood. Spectrochim Acta Part B At Spectrosc. 1993;48:925–939.CrossRef Parsons PJ, Slavin W. A rapid Zeeman graphite furnace atomic absorption spectrometric method for the determination of lead in blood. Spectrochim Acta Part B At Spectrosc. 1993;48:925–939.CrossRef
19.
Zurück zum Zitat Prutsman-Pfeiffer JJ. Lead in the human femoral head: relationships of pathology, environmental exposure, micro-architecture, and biocultural contributions to bone quality. Prutsman-Pfeiffer JJ. Lead in the human femoral head: relationships of pathology, environmental exposure, micro-architecture, and biocultural contributions to bone quality.
20.
Zurück zum Zitat Puzas JE, Sickel MJ, Felter ME. Osteoblasts and chondrocytes are important target cells for the toxic effects of lead. Neurotoxicology. 1992;13:783–788.PubMed Puzas JE, Sickel MJ, Felter ME. Osteoblasts and chondrocytes are important target cells for the toxic effects of lead. Neurotoxicology. 1992;13:783–788.PubMed
21.
Zurück zum Zitat Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109:1405–1415.CrossRefPubMedPubMedCentral Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109:1405–1415.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zuscik MJ, Ma L, Buckley T, Puzas JE, Drissi H, Schwarz EM, O’Keefe RJ. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations. Environ Health Perspect. 2007;115:1276–1282.CrossRefPubMedPubMedCentral Zuscik MJ, Ma L, Buckley T, Puzas JE, Drissi H, Schwarz EM, O’Keefe RJ. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations. Environ Health Perspect. 2007;115:1276–1282.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Zuscik MJ, Pateder DB, Puzas JE, Schwarz EM, Rosier RN, O’Keefe RJ. Lead alters parathyroid hormone-related peptide and transforming growth factor-beta1 effects and AP-1 and NF-kappaB signaling in chondrocytes. J Orthop Res. 2002;20:811–818.CrossRefPubMed Zuscik MJ, Pateder DB, Puzas JE, Schwarz EM, Rosier RN, O’Keefe RJ. Lead alters parathyroid hormone-related peptide and transforming growth factor-beta1 effects and AP-1 and NF-kappaB signaling in chondrocytes. J Orthop Res. 2002;20:811–818.CrossRefPubMed
Metadaten
Titel
Allogeneic and Autogenous Bone Grafts Are Affected by Historical Donor Environmental Exposure
verfasst von
Caleb Behrend, MD
Jonathon Carmouche, MD
Paul W. Millhouse, MD
Lauren Ritter, MPH
Joseph Moskal, MD
Paul Rubery, MD
Edward Puzas, PhD
Publikationsdatum
28.10.2015
Verlag
Springer US
Erschienen in
Clinical Orthopaedics and Related Research® / Ausgabe 6/2016
Print ISSN: 0009-921X
Elektronische ISSN: 1528-1132
DOI
https://doi.org/10.1007/s11999-015-4572-7

Weitere Artikel der Ausgabe 6/2016

Clinical Orthopaedics and Related Research® 6/2016 Zur Ausgabe

Symposium: Current Issues in Orthopaedic Trauma: Tribute to Clifford H. Turen

The Radiographic Union Score for Hip (RUSH) Identifies Radiographic Nonunion of Femoral Neck Fractures

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.