Skip to main content
Erschienen in: Brain Topography 4/2018

18.04.2018 | Original Paper

Alteration and Role of Interhemispheric and Intrahemispheric Connectivity in Motor Network After Stroke

verfasst von: Jungsoo Lee, Eunhee Park, Ahee Lee, Won Hyuk Chang, Dae-Shik Kim, Yun-Hee Kim

Erschienen in: Brain Topography | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

This study investigated local and global changes in the motor network using longitudinal resting-state functional magnetic resonance imaging (rs-fMRI). Motor impairment was measured in 81 stroke patients using Fugl-Meyer assessment on the same day as rs-fMRI acquisition at both 2 weeks and 3 months post-stroke. The relationships between network measures and motor function scores were assessed. With regard to local connectivity, interhemispheric connectivity was noticeably altered at each time point. Interhemispheric connectivity was also related to residual motor function and improvement in motor function. The anterior intraparietal sulcus and other well-known primary and secondary motor-related regions played important roles in motor function. Changes in global connectivity according to stroke type and initial severity were investigated. In global connectivity, interhemispheric connectivity was disrupted at 2 weeks post-stroke regardless of stroke type and initial severity. During the recovery period, interhemispheric connectivity recovered well in patients with hemorrhagic stroke or low severity. In contrast, there were no significant between-group and within-group alterations in intrahemispheric connectivity. Intrahemispheric connectivity of the inferior frontal cortex (IFC) exhibited opposite alterations compared to other connections. There were no differences between groups in IFC connectivity alterations; however, decreasing ipsilesional IFC connectivity and contralesional IFC during recovery were noticeable in patients with mild to moderate impairments and patients with severe impairments, respectively. These results may be helpful in understanding the network changes that occur after stroke and could have important implications for treatment strategy development in future studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22:530–540CrossRefPubMed Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22:530–540CrossRefPubMed
Zurück zum Zitat Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349CrossRefPubMed Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349CrossRefPubMed
Zurück zum Zitat Buma FE, Lindeman E, Ramsey NF, Kwakkel G (2010) Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature. Neurorehabilit Neural Repair 24:589–608CrossRef Buma FE, Lindeman E, Ramsey NF, Kwakkel G (2010) Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature. Neurorehabilit Neural Repair 24:589–608CrossRef
Zurück zum Zitat Carey LM et al (2013) Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurol 8:507–527CrossRef Carey LM et al (2013) Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurol 8:507–527CrossRef
Zurück zum Zitat Chen X et al (2015) An ischemic stroke model of nonhuman primates for remote lesion studies: a behavioral and neuroimaging investigation. Restor Neurol Neurosci 33:131–142PubMed Chen X et al (2015) An ischemic stroke model of nonhuman primates for remote lesion studies: a behavioral and neuroimaging investigation. Restor Neurol Neurosci 33:131–142PubMed
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed
Zurück zum Zitat Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057CrossRefPubMedPubMedCentral Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057CrossRefPubMedPubMedCentral
Zurück zum Zitat Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16:430–439CrossRefPubMed Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16:430–439CrossRefPubMed
Zurück zum Zitat Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB (1994) Similar motor recovery of upper and lower extremities after stroke. Stroke 25:1181–1188CrossRefPubMed Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB (1994) Similar motor recovery of upper and lower extremities after stroke. Stroke 25:1181–1188CrossRefPubMed
Zurück zum Zitat Ehrsson HH, Fagergren A, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 85:2613–2623CrossRefPubMed Ehrsson HH, Fagergren A, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J Neurophysiol 85:2613–2623CrossRefPubMed
Zurück zum Zitat Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S (1974) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7:13–31 Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S (1974) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7:13–31
Zurück zum Zitat Gratton C, Nomura EM, Pérez F, D’Esposito M (2012) Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J Cogn Neurosci 24:1275–1285CrossRefPubMedPubMedCentral Gratton C, Nomura EM, Pérez F, D’Esposito M (2012) Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J Cogn Neurosci 24:1275–1285CrossRefPubMedPubMedCentral
Zurück zum Zitat He BJ, Shulman GL, Snyder AZ, Corbetta M (2007a) The role of impaired neuronal communication in neurological disorders. Curr Opin Neurol 20:655–660CrossRefPubMed He BJ, Shulman GL, Snyder AZ, Corbetta M (2007a) The role of impaired neuronal communication in neurological disorders. Curr Opin Neurol 20:655–660CrossRefPubMed
Zurück zum Zitat He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007b) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918CrossRefPubMed He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007b) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918CrossRefPubMed
Zurück zum Zitat Koch G et al (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. Neuroimage 51:300–312CrossRefPubMed Koch G et al (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. Neuroimage 51:300–312CrossRefPubMed
Zurück zum Zitat Linden DE, Prvulovic D, Formisano E, Völlinger M, Zanella FE, Goebel R, Dierks T (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9:815–823CrossRefPubMed Linden DE, Prvulovic D, Formisano E, Völlinger M, Zanella FE, Goebel R, Dierks T (1999) The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex 9:815–823CrossRefPubMed
Zurück zum Zitat Olivier E, Davare M, Andres M, Fadiga L (2007) Precision grasping in humans: from motor control to cognition. Curr Opin Neurobiol 17:644–648CrossRefPubMed Olivier E, Davare M, Andres M, Fadiga L (2007) Precision grasping in humans: from motor control to cognition. Curr Opin Neurobiol 17:644–648CrossRefPubMed
Zurück zum Zitat Paolucci S et al (2003) Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation: a matched comparison. Stroke 34:2861–2865CrossRefPubMed Paolucci S et al (2003) Functional outcome of ischemic and hemorrhagic stroke patients after inpatient rehabilitation: a matched comparison. Stroke 34:2861–2865CrossRefPubMed
Zurück zum Zitat Park C-h, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim Y-H (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357–1362CrossRefPubMedPubMedCentral Park C-h, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim Y-H (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42:1357–1362CrossRefPubMedPubMedCentral
Zurück zum Zitat Perna R, Temple J (2015) Rehabilitation outcomes: ischemic versus hemorrhagic strokes. Behav Neurol 2015:1–6CrossRef Perna R, Temple J (2015) Rehabilitation outcomes: ischemic versus hemorrhagic strokes. Behav Neurol 2015:1–6CrossRef
Zurück zum Zitat Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591:17–31CrossRefPubMed Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591:17–31CrossRefPubMed
Zurück zum Zitat Rehme AK, Fink GR, von Cramon DY, Grefkes C (2010) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21:756–768CrossRefPubMed Rehme AK, Fink GR, von Cramon DY, Grefkes C (2010) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21:756–768CrossRefPubMed
Zurück zum Zitat Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59:2771–2782CrossRefPubMed Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage 59:2771–2782CrossRefPubMed
Zurück zum Zitat Reichenbach A, Bresciani J-P, Peer A, Bülthoff HH, Thielscher A (2010) Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-guided TMS. Cereb Cortex 21:1602–1612CrossRefPubMedPubMedCentral Reichenbach A, Bresciani J-P, Peer A, Bülthoff HH, Thielscher A (2010) Contributions of the PPC to online control of visually guided reaching movements assessed with fMRI-guided TMS. Cereb Cortex 21:1602–1612CrossRefPubMedPubMedCentral
Zurück zum Zitat Schaechter JD, Perdue KL, Wang R (2008) Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 39:1370–1382CrossRefPubMed Schaechter JD, Perdue KL, Wang R (2008) Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 39:1370–1382CrossRefPubMed
Zurück zum Zitat Schepers VP, Ketelaar M, Visser-Meily AJ, de Groot V, Twisk JW, Lindeman E (2008) Functional recovery differs between ischaemic and haemorrhagic stroke patients. J Rehabil Med 40:487–489CrossRefPubMed Schepers VP, Ketelaar M, Visser-Meily AJ, de Groot V, Twisk JW, Lindeman E (2008) Functional recovery differs between ischaemic and haemorrhagic stroke patients. J Rehabil Med 40:487–489CrossRefPubMed
Zurück zum Zitat Schulz R et al (2015) Parietofrontal motor pathways and their association with motor function after stroke. Brain 138:1949–1960CrossRefPubMed Schulz R et al (2015) Parietofrontal motor pathways and their association with motor function after stroke. Brain 138:1949–1960CrossRefPubMed
Zurück zum Zitat Siegel JS et al (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 113:E4367–E4376CrossRefPubMedPubMedCentral Siegel JS et al (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 113:E4367–E4376CrossRefPubMedPubMedCentral
Zurück zum Zitat Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171CrossRefPubMed Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171CrossRefPubMed
Zurück zum Zitat Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180CrossRefPubMed Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180CrossRefPubMed
Zurück zum Zitat Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037CrossRefPubMedPubMedCentral Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037CrossRefPubMedPubMedCentral
Zurück zum Zitat Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511CrossRefPubMed Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511CrossRefPubMed
Zurück zum Zitat van Meer MP et al (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32:4495–4507CrossRefPubMed van Meer MP et al (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32:4495–4507CrossRefPubMed
Metadaten
Titel
Alteration and Role of Interhemispheric and Intrahemispheric Connectivity in Motor Network After Stroke
verfasst von
Jungsoo Lee
Eunhee Park
Ahee Lee
Won Hyuk Chang
Dae-Shik Kim
Yun-Hee Kim
Publikationsdatum
18.04.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0644-9

Weitere Artikel der Ausgabe 4/2018

Brain Topography 4/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.