Skip to main content
Erschienen in: Inflammation 2/2017

28.12.2016 | ORIGINAL ARTICLE

Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis

verfasst von: Won-Gyun Ahn, Jun-Sub Jung, Hyeok Yil Kwon, Dong-Keun Song

Erschienen in: Inflammation | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Plasma concentration of lysophosphatidylcholine (LPC) was reported to decrease in patients with sepsis. However, the mechanisms of sepsis-induced decrease in plasma LPC levels are not currently well known. In mice subjected to cecal ligation and puncture (CLP), a model of polymicrobial peritoneal sepsis, we examined alterations in LPC-related metabolic parameters in plasma, i.e., the plasma concentration of LPC-related substances (i.e., phosphatidylcholine (PC) and lysophosphatidic acid (LPA)), and activities or levels in the plasma of some enzymes that can be involved in the regulation of plasma LPC concentration (i.e., secretory phospholipase A2 (sPLA2), lecithin:cholesterol acyltransferase (LCAT), acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and autotaxin (ATX)), as well as plasma albumin concentration. We found that levels of LPC and albumin and enzyme activities of LCAT, ATX, and sPLA2 were decreased, whereas levels of PC, LPA, and LPCAT1–3 were increased in the plasma of mice subjected to CLP. Bacterial peritonitis led to alterations in all the measured LPC-related metabolic parameters in the plasma, which could potentially contribute to sepsis-induced decrease in plasma LPC levels. These findings could lead to the novel biomarkers of sepsis.
Literatur
1.
Zurück zum Zitat Dial, E.J., D.M. Tran, J.J. Romero, M. Zayat, and L.M. Lichtenberger. 2010. A direct role for secretory phospholipase A2 and lysophosphatidylcholine in the mediation of LPS induced gastric injury. Shock 33(6): 634–638.CrossRefPubMedPubMedCentral Dial, E.J., D.M. Tran, J.J. Romero, M. Zayat, and L.M. Lichtenberger. 2010. A direct role for secretory phospholipase A2 and lysophosphatidylcholine in the mediation of LPS induced gastric injury. Shock 33(6): 634–638.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Schmid, B., M.J. Finnen, J.L. Harwood, and S.K. Jackson. 2003. Acylation of lysophosphatidylcholine plays a key role in the response of monocytes to lipopolysaccharide. European Journal of Biochemistry 270(13): 2782–2788.CrossRefPubMed Schmid, B., M.J. Finnen, J.L. Harwood, and S.K. Jackson. 2003. Acylation of lysophosphatidylcholine plays a key role in the response of monocytes to lipopolysaccharide. European Journal of Biochemistry 270(13): 2782–2788.CrossRefPubMed
3.
Zurück zum Zitat Lin, P., E.J. Welch, X.-P. Gao, A.B. Malik, and R.D. Ye. 2005. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. Journal of Immunology 174(5): 2981–2989.CrossRef Lin, P., E.J. Welch, X.-P. Gao, A.B. Malik, and R.D. Ye. 2005. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. Journal of Immunology 174(5): 2981–2989.CrossRef
4.
Zurück zum Zitat Yang, L.V., C.G. Radu, L. Wang, M. Riedinger, and O.N. Witte. 2005. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105(3): 1127–1134.CrossRefPubMed Yang, L.V., C.G. Radu, L. Wang, M. Riedinger, and O.N. Witte. 2005. Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105(3): 1127–1134.CrossRefPubMed
5.
Zurück zum Zitat Thies, F., M.C. Delachambre, M. Bentejac, M. Lagarde, and J. Lecerf. 1992. Unsaturated fatty acids esterified in 2‐acyl‐1‐lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. Journal of Neurochemistry 59(3): 1110–1116.CrossRefPubMed Thies, F., M.C. Delachambre, M. Bentejac, M. Lagarde, and J. Lecerf. 1992. Unsaturated fatty acids esterified in 2‐acyl‐1‐lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. Journal of Neurochemistry 59(3): 1110–1116.CrossRefPubMed
6.
Zurück zum Zitat Subramanian, V.S., J. Goyal, M. Miwa, J. Sugatami, M. Akiyama, M. Liu, and P.V. Subbaiah. 1999. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: Studies with platelet-activating factor-acetyl hydrolase- deficient plasma. Biochimica et Biophysica Acta 1439(1): 95–109.CrossRefPubMed Subramanian, V.S., J. Goyal, M. Miwa, J. Sugatami, M. Akiyama, M. Liu, and P.V. Subbaiah. 1999. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: Studies with platelet-activating factor-acetyl hydrolase- deficient plasma. Biochimica et Biophysica Acta 1439(1): 95–109.CrossRefPubMed
7.
Zurück zum Zitat Taniyama, Y., S. Shibata, S. Kita, K. Horikoshi, H. Fuse, H. Shirafuji, Y. Sumino, and M. Fujino. 1999. Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase. Biochemical and Biophysical Research Communications 257(1): 50–56.CrossRefPubMed Taniyama, Y., S. Shibata, S. Kita, K. Horikoshi, H. Fuse, H. Shirafuji, Y. Sumino, and M. Fujino. 1999. Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase. Biochemical and Biophysical Research Communications 257(1): 50–56.CrossRefPubMed
8.
Zurück zum Zitat Slotboom, A.J., and G.H. De Haas. 1970. Hydrolysis of phosphoglycerides by purified lipase preparations II. Preparation of unsaturated 2-monoacyl choline phosphoglycerides. Chemistry and Physics of Lipids 4(1): 30–36.CrossRef Slotboom, A.J., and G.H. De Haas. 1970. Hydrolysis of phosphoglycerides by purified lipase preparations II. Preparation of unsaturated 2-monoacyl choline phosphoglycerides. Chemistry and Physics of Lipids 4(1): 30–36.CrossRef
9.
Zurück zum Zitat McKean, M.L., J.B. Smith, and M.J. Silver. 1981. Formation of lysophosphatidylcholine by human platelets in response to thrombin. Support for the phospholipase A2 pathway for the liberation of arachidonic acid. Journal of Biological Chemistry 256(4): 1522–1524.PubMed McKean, M.L., J.B. Smith, and M.J. Silver. 1981. Formation of lysophosphatidylcholine by human platelets in response to thrombin. Support for the phospholipase A2 pathway for the liberation of arachidonic acid. Journal of Biological Chemistry 256(4): 1522–1524.PubMed
10.
Zurück zum Zitat Mehta, D., S. Gupta, S.N. Gaur, S.V. Gangal, and K.P. Agrawal. 1990. Increased leukocyte phospholipase A2 activity and plasma lysophosphatidylcholine levels in asthma and rhinitis and their relationship to airway sensitivity to histamine. The American Review of Respiratory Disease 142(1): 157–161.CrossRefPubMed Mehta, D., S. Gupta, S.N. Gaur, S.V. Gangal, and K.P. Agrawal. 1990. Increased leukocyte phospholipase A2 activity and plasma lysophosphatidylcholine levels in asthma and rhinitis and their relationship to airway sensitivity to histamine. The American Review of Respiratory Disease 142(1): 157–161.CrossRefPubMed
11.
Zurück zum Zitat Eder, A.M., T. Sasagawa, M. Mao, J. Aoki, and G.B. Mills. 2000. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: Role of phospholipase D and phospholipase A2. Clinical Cancer Research 6(6): 2482–2491.PubMed Eder, A.M., T. Sasagawa, M. Mao, J. Aoki, and G.B. Mills. 2000. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: Role of phospholipase D and phospholipase A2. Clinical Cancer Research 6(6): 2482–2491.PubMed
12.
Zurück zum Zitat Lee, S., and K.R. Lynch. 2005. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochemical Journal 391(2): 317.CrossRefPubMedPubMedCentral Lee, S., and K.R. Lynch. 2005. Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochemical Journal 391(2): 317.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Fourcade, O., M.F. Simon, C. Viodé, N. Rugani, F. Leballe, A. Ragab, B. Fournié, L. Sarda, and H. Chap. 1995. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80(6): 919–927.CrossRefPubMed Fourcade, O., M.F. Simon, C. Viodé, N. Rugani, F. Leballe, A. Ragab, B. Fournié, L. Sarda, and H. Chap. 1995. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80(6): 919–927.CrossRefPubMed
14.
Zurück zum Zitat Brown, W.J., K. Chambers, and A. Doody. 2003. Phospholipase A2 (PLA2) enzymes in membrane trafficking: Mediators of membrane shape and function. Traffic 4(4): 214–221.CrossRefPubMed Brown, W.J., K. Chambers, and A. Doody. 2003. Phospholipase A2 (PLA2) enzymes in membrane trafficking: Mediators of membrane shape and function. Traffic 4(4): 214–221.CrossRefPubMed
15.
Zurück zum Zitat Chen, X., B.A. Hyatt, M.L. Mucenski, R.J. Mason, and J.M. Shannon. 2006. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proceedings of the National Academy of Sciences 103(31): 11724–11729.CrossRef Chen, X., B.A. Hyatt, M.L. Mucenski, R.J. Mason, and J.M. Shannon. 2006. Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proceedings of the National Academy of Sciences 103(31): 11724–11729.CrossRef
16.
Zurück zum Zitat Nakanishi, H., H. Shindou, D. Hishikawa, T. Harayama, R. Ogasawara, A. Suwabe, R. Taguchi, and T. Shimizu. 2006. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. The Journal of Biological Chemistry 281(29): 20140–20147.CrossRefPubMed Nakanishi, H., H. Shindou, D. Hishikawa, T. Harayama, R. Ogasawara, A. Suwabe, R. Taguchi, and T. Shimizu. 2006. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. The Journal of Biological Chemistry 281(29): 20140–20147.CrossRefPubMed
17.
Zurück zum Zitat Soupene, E., H. Fyrst, and F.A. Kuypers. 2008. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes. Proceedings of the National Academy of Sciences 105(1): 88–93.CrossRef Soupene, E., H. Fyrst, and F.A. Kuypers. 2008. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes. Proceedings of the National Academy of Sciences 105(1): 88–93.CrossRef
18.
Zurück zum Zitat Zhao, Y., Y.Q. Chen, T.M. Bonacci, D.S. Bredt, S. Li, W.R. Bensch, D.E. Moller, M. Kowala, R.J. Konrad, and G. Cao. 2008. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. Journal of Biological Chemistry 283(13): 8258–8265.CrossRefPubMed Zhao, Y., Y.Q. Chen, T.M. Bonacci, D.S. Bredt, S. Li, W.R. Bensch, D.E. Moller, M. Kowala, R.J. Konrad, and G. Cao. 2008. Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. Journal of Biological Chemistry 283(13): 8258–8265.CrossRefPubMed
19.
Zurück zum Zitat Bridges, J.P., M. Ikegami, L.L. Brilli, X. Chen, R.J. Mason, and J.M. Shannon. 2010. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. Journal of Clinical Investigation 120(5): 1736–1748.CrossRefPubMedPubMedCentral Bridges, J.P., M. Ikegami, L.L. Brilli, X. Chen, R.J. Mason, and J.M. Shannon. 2010. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. Journal of Clinical Investigation 120(5): 1736–1748.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Moessinger, C., L. Kuerschner, J. Spandl, A. Shevchenko, and C. Thiele. 2011. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. The Journal of Biological Chemistry 286(24): 21330–21339.CrossRefPubMedPubMedCentral Moessinger, C., L. Kuerschner, J. Spandl, A. Shevchenko, and C. Thiele. 2011. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. The Journal of Biological Chemistry 286(24): 21330–21339.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Drobnik, W. 2003. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. Journal of Lipid Research 44(4): 754–761.CrossRefPubMed Drobnik, W. 2003. Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. Journal of Lipid Research 44(4): 754–761.CrossRefPubMed
22.
Zurück zum Zitat Cho, W.H., T. Park, Y.Y. Park, J.W. Huh, C.-M. Lim, Y. Koh, D.K. Song, and S.-B. Hong. 2011. Clinical significance of enzymatic lysophosphatidylcholine (LPC) assay data in patients with sepsis. European Journal of Clinical Microbiology and Infectious Diseases 31(8): 1805–1810.CrossRefPubMed Cho, W.H., T. Park, Y.Y. Park, J.W. Huh, C.-M. Lim, Y. Koh, D.K. Song, and S.-B. Hong. 2011. Clinical significance of enzymatic lysophosphatidylcholine (LPC) assay data in patients with sepsis. European Journal of Clinical Microbiology and Infectious Diseases 31(8): 1805–1810.CrossRefPubMed
23.
Zurück zum Zitat Park, D.W., D.S. Kwak, Y.Y. Park, Y. Chang, J.W. Huh, C.M. Lim, Y. Koh, D.-K. Song, and S.-B. Hong. 2014. Impact of serial measurements of lysophosphatidylcholine on 28-day mortality prediction in patients admitted to the intensive care unit with severe sepsis or septic shock. Journal of Critical Care 29(5): 882.e885–882.e811.CrossRef Park, D.W., D.S. Kwak, Y.Y. Park, Y. Chang, J.W. Huh, C.M. Lim, Y. Koh, D.-K. Song, and S.-B. Hong. 2014. Impact of serial measurements of lysophosphatidylcholine on 28-day mortality prediction in patients admitted to the intensive care unit with severe sepsis or septic shock. Journal of Critical Care 29(5): 882.e885–882.e811.CrossRef
24.
Zurück zum Zitat Yan, J.-J., J.-S. Jung, J.-E. Lee, J. Lee, S.-O. Huh, H.-S. Kim, K.C. Jung, J.-Y. Cho, J.-S. Nam, H.-W. Suh, Y.-H. Kim, and D.K. Song. 2004. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nature Medicine 10(2): 161–167.CrossRefPubMed Yan, J.-J., J.-S. Jung, J.-E. Lee, J. Lee, S.-O. Huh, H.-S. Kim, K.C. Jung, J.-Y. Cho, J.-S. Nam, H.-W. Suh, Y.-H. Kim, and D.K. Song. 2004. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nature Medicine 10(2): 161–167.CrossRefPubMed
25.
Zurück zum Zitat Bächner, D., M. Ahrens, N. Betat, D. Schröder, and G. Gross. 1999. Developmental expression analysis of murine autotaxin (ATX). Mechanisms of Development 84(1–2): 121–125.CrossRefPubMed Bächner, D., M. Ahrens, N. Betat, D. Schröder, and G. Gross. 1999. Developmental expression analysis of murine autotaxin (ATX). Mechanisms of Development 84(1–2): 121–125.CrossRefPubMed
26.
Zurück zum Zitat Tokumura, A. 2002. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. The Journal of Biological Chemistry 277(42): 39436–39442.CrossRefPubMed Tokumura, A. 2002. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. The Journal of Biological Chemistry 277(42): 39436–39442.CrossRefPubMed
27.
Zurück zum Zitat Tokumura, A. 2004. Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators. Journal of Cellular Biochemistry 92(5): 869–881.CrossRefPubMed Tokumura, A. 2004. Metabolic pathways and physiological and pathological significances of lysolipid phosphate mediators. Journal of Cellular Biochemistry 92(5): 869–881.CrossRefPubMed
28.
Zurück zum Zitat Kanda, H., R. Newton, R. Klein, Y. Morita, M.D. Gunn, and S.D. Rosen. 2008. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Natural Immunity 9(4): 415–423.CrossRef Kanda, H., R. Newton, R. Klein, Y. Morita, M.D. Gunn, and S.D. Rosen. 2008. Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Natural Immunity 9(4): 415–423.CrossRef
29.
Zurück zum Zitat Moolenaar, W.H., and A. Perrakis. 2011. Insights into autotaxin: How to produce and present a lipid mediator. Nature Reviews Molecular Cell Biology 12(10): 674–679.CrossRefPubMed Moolenaar, W.H., and A. Perrakis. 2011. Insights into autotaxin: How to produce and present a lipid mediator. Nature Reviews Molecular Cell Biology 12(10): 674–679.CrossRefPubMed
30.
Zurück zum Zitat Fulkerson, Z., T. Wu, M. Sunkara, C.V. Kooi, A.J. Morris, and S.S. Smyth. 2011. Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. Journal of Biological Chemistry 286(40): 34654–34663.CrossRefPubMedPubMedCentral Fulkerson, Z., T. Wu, M. Sunkara, C.V. Kooi, A.J. Morris, and S.S. Smyth. 2011. Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. Journal of Biological Chemistry 286(40): 34654–34663.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Barlage, S., D. Fröhlich, A. Böttcher, M. Jauhiainen, H.P. Müller, F. Noetzel, G. Rothe, C. Schütt, R.P. Linke, K.J. Lackner, C. Ehnholm, and G. Schmitz. 2001. ApoE-containing high density lipoproteins and phospholipid transfer protein activity increase in patients with a systemic inflammatory response. Journal of Lipid Research 42(2): 281–290.PubMed Barlage, S., D. Fröhlich, A. Böttcher, M. Jauhiainen, H.P. Müller, F. Noetzel, G. Rothe, C. Schütt, R.P. Linke, K.J. Lackner, C. Ehnholm, and G. Schmitz. 2001. ApoE-containing high density lipoproteins and phospholipid transfer protein activity increase in patients with a systemic inflammatory response. Journal of Lipid Research 42(2): 281–290.PubMed
32.
Zurück zum Zitat Shindou, H., D. Hishikawa, H. Nakanishi, T. Harayama, S. Ishii, R. Taguchi, and T. Shimizu. 2007. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. The Journal of Biological Chemistry 282(9): 6532–6539.CrossRefPubMed Shindou, H., D. Hishikawa, H. Nakanishi, T. Harayama, S. Ishii, R. Taguchi, and T. Shimizu. 2007. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. The Journal of Biological Chemistry 282(9): 6532–6539.CrossRefPubMed
33.
Zurück zum Zitat Morishige, J., K. Touchika, T. Tanaka, K. Satouchi, K. Fukuzawa, and A. Tokumura. 2007. Production of bioactive lysophosphatidic acid by lysophospholipase D in hen egg white. Biochimica et Biophysica Acta 1771(4): 491–499.CrossRefPubMed Morishige, J., K. Touchika, T. Tanaka, K. Satouchi, K. Fukuzawa, and A. Tokumura. 2007. Production of bioactive lysophosphatidic acid by lysophospholipase D in hen egg white. Biochimica et Biophysica Acta 1771(4): 491–499.CrossRefPubMed
34.
Zurück zum Zitat Umezu-Goto, M. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. Journal of Cell Biology 158(2): 227–233.CrossRefPubMedPubMedCentral Umezu-Goto, M. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. Journal of Cell Biology 158(2): 227–233.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat van Meeteren, L.A. 2005. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. Journal of Biological Chemistry 280(22): 21155–21161.CrossRefPubMed van Meeteren, L.A. 2005. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. Journal of Biological Chemistry 280(22): 21155–21161.CrossRefPubMed
Metadaten
Titel
Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis
verfasst von
Won-Gyun Ahn
Jun-Sub Jung
Hyeok Yil Kwon
Dong-Keun Song
Publikationsdatum
28.12.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0500-6

Weitere Artikel der Ausgabe 2/2017

Inflammation 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.