Skip to main content
Erschienen in:

30.03.2023 | Original Paper

Altered microbiota caused by disordered gut motility leads to an overactivation of intestinal immune system in APC1638T mice

verfasst von: Nami O. Yamada, Wenduerma, Takao Senda

Erschienen in: Medical Molecular Morphology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Adenomatous polyposis coli (APC) is recognized as an antioncogene related to familial adenomatous polyposis and colorectal cancers. However, APC is a large protein with multiple binding partners, indicating APC has diverse roles besides as a tumor suppressor. We have ever studied the roles of APC by using APC1638T/1638T (APC1638T) mice. Through those studies, we have noticed stools of APC1638T mice were smaller than those of APC+/+ mice and hypothesized there be a disturbance in fecal formation processes in APC1638T mice. The gut motility was morphologically analyzed by immunohistochemical staining of the Auerbach’s plexus. Gut microbiota was analyzed by terminal restriction fragment length polymorphism (T-RFLP). IgA concentration in stools was determined by enzyme-linked immunosorbent assay (ELISA). As results, macroscopic findings suggestive of large intestinal dysmotility and microscopic findings of disorganization and inflammation of the plexus were obtained in APC1638T mice. An alteration of microbiota composition, especially increased Bacteroidetes population was observed. Increases in IgA positive cells and dendritic cells in the ileum with high fecal IgA concentration were also confirmed, suggesting over-activation of gut immunity. Our findings will contribute to our understanding of APC’s functions in the gastrointestinal motility, and lead to a development of novel therapies for gut dysmotility-related diseases.
Literatur
1.
Zurück zum Zitat Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665CrossRefPubMed Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665CrossRefPubMed
2.
Zurück zum Zitat Fodde R (2003) The multiple functions of tumour suppressors: it’s all in APC. Nat Cell Biol 5(3):190–192CrossRefPubMed Fodde R (2003) The multiple functions of tumour suppressors: it’s all in APC. Nat Cell Biol 5(3):190–192CrossRefPubMed
3.
Zurück zum Zitat Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40(2):68–81CrossRefPubMed Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40(2):68–81CrossRefPubMed
4.
Zurück zum Zitat Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13(10):1309–1321CrossRefPubMedPubMedCentral Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S, Hofland N, van Dijk J, White R, Edelmann W, Kucherlapati R, Khan PM, Fodde R (1999) Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13(10):1309–1321CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, Kurosumi M, Takao K, Nomura R, Iizuka-Kogo A, Suzuki H, Kondo K, Akiyama T, Miyakawa T, Fodde R, Senda T (2014) Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain 7:21CrossRefPubMedPubMedCentral Onouchi T, Kobayashi K, Sakai K, Shimomura A, Smits R, Sumi-Ichinose C, Kurosumi M, Takao K, Nomura R, Iizuka-Kogo A, Suzuki H, Kondo K, Akiyama T, Miyakawa T, Fodde R, Senda T (2014) Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia. Mol Brain 7:21CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Li C, Onouchi T, Hirayama M, Sakai K, Matsuda S, Yamada NO, Senda T (2020) Morphological and functional abnormalities of hippocampus in APC(1638T/1638T) mice. Med Mol Morphol 54(1):31–40CrossRefPubMed Li C, Onouchi T, Hirayama M, Sakai K, Matsuda S, Yamada NO, Senda T (2020) Morphological and functional abnormalities of hippocampus in APC(1638T/1638T) mice. Med Mol Morphol 54(1):31–40CrossRefPubMed
7.
Zurück zum Zitat Wang T, Onouchi T, Yamada NO, Matsuda S, Senda T (2017) A disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol 50(2):94–102CrossRefPubMed Wang T, Onouchi T, Yamada NO, Matsuda S, Senda T (2017) A disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol 50(2):94–102CrossRefPubMed
8.
Zurück zum Zitat Wenduerma YNO, Wang T, Senda T (2021) A further study on a disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol. 54:203–215CrossRefPubMed Wenduerma YNO, Wang T, Senda T (2021) A further study on a disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Med Mol Morphol. 54:203–215CrossRefPubMed
9.
Zurück zum Zitat Yokoyama A, Nomura R, Kurosumi M, Shimomura A, Onouchi T, Iizuka-Kogo A, Smits R, Fodde R, Itoh M, Senda T (2012) Some fine-structural findings on the thyroid gland in Apc1638T/1638T mice that express a C-terminus lacking truncated Apc. Med Mol Morphol 45(3):161–167CrossRefPubMed Yokoyama A, Nomura R, Kurosumi M, Shimomura A, Onouchi T, Iizuka-Kogo A, Smits R, Fodde R, Itoh M, Senda T (2012) Some fine-structural findings on the thyroid gland in Apc1638T/1638T mice that express a C-terminus lacking truncated Apc. Med Mol Morphol 45(3):161–167CrossRefPubMed
11.
Zurück zum Zitat Yanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S, Takahashi Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2009) Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem 73(2):372–377CrossRefPubMed Yanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S, Takahashi Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2009) Bacteroides induce higher IgA production than Lactobacillus by increasing activation-induced cytidine deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem 73(2):372–377CrossRefPubMed
12.
Zurück zum Zitat Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2013) IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 218(4):645–651CrossRefPubMed Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2013) IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 218(4):645–651CrossRefPubMed
13.
Zurück zum Zitat Nagashima K, Hisada T, Sato M, Mochizuki J (2003) Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol 69(2):1251–1262CrossRefPubMedPubMedCentral Nagashima K, Hisada T, Sato M, Mochizuki J (2003) Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial populations in human feces. Appl Environ Microbiol 69(2):1251–1262CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555CrossRefPubMed Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555CrossRefPubMed
15.
Zurück zum Zitat Hayashi H, Sakamoto M, Benno Y (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal bifidobacterium spp in healthy subjects. Microbiol Immunol 48(1):1–6CrossRefPubMed Hayashi H, Sakamoto M, Benno Y (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal bifidobacterium spp in healthy subjects. Microbiol Immunol 48(1):1–6CrossRefPubMed
16.
Zurück zum Zitat Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Methods 133(1–2):99–107CrossRefPubMed Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Methods 133(1–2):99–107CrossRefPubMed
17.
Zurück zum Zitat Bishop AE, Carlei F, Lee V, Trojanowski J, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82(1):93–97CrossRefPubMed Bishop AE, Carlei F, Lee V, Trojanowski J, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82(1):93–97CrossRefPubMed
18.
Zurück zum Zitat Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143CrossRefPubMed Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143CrossRefPubMed
19.
Zurück zum Zitat Swanson MEV, Murray HC, Ryan B, Faull RLM, Dragunow M, Curtis MA (2020) Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context. Sci Rep 10(1):11693CrossRefPubMedPubMedCentral Swanson MEV, Murray HC, Ryan B, Faull RLM, Dragunow M, Curtis MA (2020) Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context. Sci Rep 10(1):11693CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Koizumi T, Kerkhofs D, Mizuno T, Steinbusch HWM, Foulquier S (2019) Vessel-associated immune cells in cerebrovascular diseases: from perivascular macrophages to vessel-associated microglia. Front Neurosci 13:1291CrossRefPubMedPubMedCentral Koizumi T, Kerkhofs D, Mizuno T, Steinbusch HWM, Foulquier S (2019) Vessel-associated immune cells in cerebrovascular diseases: from perivascular macrophages to vessel-associated microglia. Front Neurosci 13:1291CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Leyh J, Paeschke S, Mages B, Michalski D, Nowicki M, Bechmann I, Winter K (2021) Classification of microglial morphological phenotypes using machine learning. Front Cell Neurosci 15:701673CrossRefPubMedPubMedCentral Leyh J, Paeschke S, Mages B, Michalski D, Nowicki M, Bechmann I, Winter K (2021) Classification of microglial morphological phenotypes using machine learning. Front Cell Neurosci 15:701673CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Kohrgruber N, Halanek N, Groger M, Winter D, Rappersberger K, Schmitt-Egenolf M, Stingl G, Maurer D (1999) Survival, maturation, and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J Immunol 163(6):3250–3259CrossRefPubMed Kohrgruber N, Halanek N, Groger M, Winter D, Rappersberger K, Schmitt-Egenolf M, Stingl G, Maurer D (1999) Survival, maturation, and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J Immunol 163(6):3250–3259CrossRefPubMed
23.
Zurück zum Zitat Qualai J, Li LX, Cantero J, Tarrats A, Fernandez MA, Sumoy L, Rodolosse A, McSorley SJ, Genesca M (2016) Expression of CD11c Is associated with unconventional activated T cell subsets with high migratory potential. PLoS ONE 11(4):e0154253CrossRefPubMedPubMedCentral Qualai J, Li LX, Cantero J, Tarrats A, Fernandez MA, Sumoy L, Rodolosse A, McSorley SJ, Genesca M (2016) Expression of CD11c Is associated with unconventional activated T cell subsets with high migratory potential. PLoS ONE 11(4):e0154253CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Freytag C, Seeger J, Siegemund T, Grosche J, Grosche A, Freeman DE, Schusser GF, Hartig W (2008) Immunohistochemical characterization and quantitative analysis of neurons in the myenteric plexus of the equine intestine. Brain Res 1244:53–64CrossRefPubMed Freytag C, Seeger J, Siegemund T, Grosche J, Grosche A, Freeman DE, Schusser GF, Hartig W (2008) Immunohistochemical characterization and quantitative analysis of neurons in the myenteric plexus of the equine intestine. Brain Res 1244:53–64CrossRefPubMed
25.
Zurück zum Zitat Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 14(2):197–204CrossRefPubMed Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 14(2):197–204CrossRefPubMed
26.
Zurück zum Zitat Desmet AS, Cirillo C, Vanden BP (2014) Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterol Motil 26(8):1131–1143CrossRefPubMed Desmet AS, Cirillo C, Vanden BP (2014) Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterol Motil 26(8):1131–1143CrossRefPubMed
27.
Zurück zum Zitat Swaminathan M, Kapur RP (2010) Counting myenteric ganglion cells in histologic sections: an empirical approach. Hum Pathol 41(8):1097–1108CrossRefPubMed Swaminathan M, Kapur RP (2010) Counting myenteric ganglion cells in histologic sections: an empirical approach. Hum Pathol 41(8):1097–1108CrossRefPubMed
28.
Zurück zum Zitat Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101(2):515–541CrossRefPubMed Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101(2):515–541CrossRefPubMed
29.
Zurück zum Zitat Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305(1):G1-24CrossRefPubMedPubMedCentral Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305(1):G1-24CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87(3):492–506CrossRefPubMed Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87(3):492–506CrossRefPubMed
32.
Zurück zum Zitat Bennett ML, Viaene AN (2021) What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis 148:105172CrossRefPubMed Bennett ML, Viaene AN (2021) What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis 148:105172CrossRefPubMed
34.
Zurück zum Zitat Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677CrossRefPubMedPubMedCentral Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A (2013) Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6(4):666–677CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241CrossRefPubMedPubMedCentral Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R (2016) Bowel disorders. Gastroenterology 150(6):1393–1407CrossRef Mearin F, Lacy BE, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R (2016) Bowel disorders. Gastroenterology 150(6):1393–1407CrossRef
Metadaten
Titel
Altered microbiota caused by disordered gut motility leads to an overactivation of intestinal immune system in APC1638T mice
verfasst von
Nami O. Yamada
Wenduerma
Takao Senda
Publikationsdatum
30.03.2023
Verlag
Springer Nature Singapore
Erschienen in
Medical Molecular Morphology / Ausgabe 3/2023
Print ISSN: 1860-1480
Elektronische ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-023-00352-1

Neu im Fachgebiet Pathologie

„KI“ in der Rechtsmedizin – von der Forschung in die Praxis: Welche Herausforderungen ergeben sich?

Der Einsatz künstlicher Intelligenz (KI) in der Rechtsmedizin ist absehbar, KI-Anwendungen könnten im Ermittlungsverfahren oder in foro bald eine zentrale Rolle in Entscheidungsprozessen einnehmen. Dann werden insbesondere Transparenz …

Latent spaces of generative models for forensic age estimation

  • Open Access
  • Original reports

Similar to other parts of our society, machine learning has emerged as a popular tool within different areas of forensic medicine and will soon fuel more and more research and practice niches of our disciplines. Given the rapid advances, the …

Artificial intelligence in forensic pathology: an Australian and New Zealand perspective

  • Open Access
  • Leitthema

Artificial intelligence application has gained popularity in the last decade. Its application is implemented into multiple industries including the health sector; however, discipline-specific artificial intelligence applications are not widely …

Künstliche Intelligenz in der forensisch-radiologischen Altersdiagnostik

Fragen zu Implementierung und Nutzbarkeit von künstlicher Intelligenz (KI) spielen eine immer größere Rolle in der Forensischen Altersdiagnostik bei Lebenden, insbesondere im Rahmen forensisch-radiologischer Ansätze. Bis dato liegen bereits …