Skip to main content
Erschienen in: Journal of Clinical Immunology 6/2011

01.12.2011

Altered Proportions of Naïve, Central Memory and Terminally Differentiated Central Memory Subsets among CD4+ and CD8+ T Cells Expressing CD26 in Patients with Type 1 Diabetes

verfasst von: Elena Matteucci, Massimo Ghimenti, Serena Di Beo, Ottavio Giampietro

Erschienen in: Journal of Clinical Immunology | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Type 1 diabetes is an autoimmune process predominantly T-cell mediated. CD26 plays a role in T-cell costimulation, migration, memory development, thymic maturation and emigration patterns. In peripheral blood from 55 patients with type 1 diabetes and 20 healthy controls, CD4+ and CD8+ T cells expressing CD26 were differentiated into naïve (N, CD45RA+CCR7+), central memory (CM, CD45RACCR7+), effector memory (EM, CD45RACCR7), and terminally differentiated effector memory (TEMRA, CD45RA+CCR7). In type 1 diabetes, CD4+ and CD8+ T cells expressing CD26 showed a distinctive differentiation profile: percentages and absolute numbers of CM and N cells were reduced, whereas those of TEMRA cells were markedly increased. The indices of intermediate- and long-term glycaemic control were associated negatively with the number of CM and N cells while positively with the number of TEMRA cells. The considerable accumulation of TEMRA T cells in our patients suggests life-long stimulation by protracted antigen exposure (viruses, other agents or residual self-antigens?) or a homeostatic defect in the regulation/contraction of immune responses.
Literatur
1.
Zurück zum Zitat Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008;29:295–301.PubMedCrossRef Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008;29:295–301.PubMedCrossRef
2.
Zurück zum Zitat Matteucci E, Giampietro O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem. 2009;16:2943–51.PubMedCrossRef Matteucci E, Giampietro O. Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem. 2009;16:2943–51.PubMedCrossRef
3.
Zurück zum Zitat Martinez-Navio JM, Casanova V, Pacheco R, Naval-Macabuhay I, Climent N, Garcia F, et al. Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. J Leukoc Biol. 2011;89:127–36.PubMedCrossRef Martinez-Navio JM, Casanova V, Pacheco R, Naval-Macabuhay I, Climent N, Garcia F, et al. Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. J Leukoc Biol. 2011;89:127–36.PubMedCrossRef
4.
Zurück zum Zitat Liu Z, Christensson M, Forslöw A, De Meester I, Sundqvist KG. A CD26-controlled cell surface cascade for regulation of T cell motility and chemokine signals. J Immunol. 2009;183:3616–24.PubMedCrossRef Liu Z, Christensson M, Forslöw A, De Meester I, Sundqvist KG. A CD26-controlled cell surface cascade for regulation of T cell motility and chemokine signals. J Immunol. 2009;183:3616–24.PubMedCrossRef
5.
Zurück zum Zitat Klemann C, Schade J, Pabst R, Leitner S, Stiller J, von Hörsten S, et al. CD26/dipeptidyl peptidase 4-deficiency alters thymic emigration patterns and leukocyte subsets in F344-rats age-dependently. Clin Exp Immunol. 2009;155:357–65.PubMedCrossRef Klemann C, Schade J, Pabst R, Leitner S, Stiller J, von Hörsten S, et al. CD26/dipeptidyl peptidase 4-deficiency alters thymic emigration patterns and leukocyte subsets in F344-rats age-dependently. Clin Exp Immunol. 2009;155:357–65.PubMedCrossRef
6.
Zurück zum Zitat Tian L, Gao J, Hao J, Zhang Y, Yi H, O’Brien TD, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology. 2010;151:3049–60.PubMedCrossRef Tian L, Gao J, Hao J, Zhang Y, Yi H, O’Brien TD, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology. 2010;151:3049–60.PubMedCrossRef
7.
Zurück zum Zitat Kim SJ, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes. 2009;58:641–51.PubMedCrossRef Kim SJ, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes. 2009;58:641–51.PubMedCrossRef
8.
Zurück zum Zitat Ibegbu CC, Xu YX, Fillos D, Radziewicz H, Grakoui A, Kourtis AP. Differential expression of CD26 on virus-specific CD8(+) T cells during active, latent and resolved infection. Immunology. 2009;126:346–53.PubMedCrossRef Ibegbu CC, Xu YX, Fillos D, Radziewicz H, Grakoui A, Kourtis AP. Differential expression of CD26 on virus-specific CD8(+) T cells during active, latent and resolved infection. Immunology. 2009;126:346–53.PubMedCrossRef
9.
Zurück zum Zitat Matteucci E, Ghimenti M, Consani C, Di Beo S, Giampietro O. About CD26 CD8 lymphocytes in type 1 diabetes mellitus. Scand J Immunol. 2010;71:123–4.PubMedCrossRef Matteucci E, Ghimenti M, Consani C, Di Beo S, Giampietro O. About CD26 CD8 lymphocytes in type 1 diabetes mellitus. Scand J Immunol. 2010;71:123–4.PubMedCrossRef
10.
Zurück zum Zitat Monti P, Heninger AK, Bonifacio E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep. 2009;9:113–8.PubMedCrossRef Monti P, Heninger AK, Bonifacio E. Differentiation, expansion, and homeostasis of autoreactive T cells in type 1 diabetes mellitus. Curr Diab Rep. 2009;9:113–8.PubMedCrossRef
11.
Zurück zum Zitat Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRef Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.PubMedCrossRef
12.
Zurück zum Zitat Pearce EL. Metabolism of T cell activation and differentiation. Curr Opin Immunol. 2010;22:314–20.PubMedCrossRef Pearce EL. Metabolism of T cell activation and differentiation. Curr Opin Immunol. 2010;22:314–20.PubMedCrossRef
13.
Zurück zum Zitat Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest. 2002;109:895–903.PubMed Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type 1a diabetes. J Clin Invest. 2002;109:895–903.PubMed
14.
Zurück zum Zitat Hofer J, Hofer S, Zlamy M, Jeller V, Koppelstaetter C, Brandstätter A, et al. Elevated proportions of recent thymic emigrants in children and adolescents with type 1 diabetes. Rejuvenation Res. 2009;12:311–20.PubMedCrossRef Hofer J, Hofer S, Zlamy M, Jeller V, Koppelstaetter C, Brandstätter A, et al. Elevated proportions of recent thymic emigrants in children and adolescents with type 1 diabetes. Rejuvenation Res. 2009;12:311–20.PubMedCrossRef
15.
Zurück zum Zitat Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, et al. Numerical defects in CD8+CD28− T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol. 2010;262:75–9.PubMedCrossRef Mikulkova Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, et al. Numerical defects in CD8+CD28− T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell Immunol. 2010;262:75–9.PubMedCrossRef
16.
Zurück zum Zitat Hedman M, Faresjö M, Axelsson S, Ludvigsson J, Casas R. Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children. Clin Exp Immunol. 2008;153:360–8.PubMedCrossRef Hedman M, Faresjö M, Axelsson S, Ludvigsson J, Casas R. Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children. Clin Exp Immunol. 2008;153:360–8.PubMedCrossRef
17.
Zurück zum Zitat Bell EB, Westermann J. CD4 memory T cells on trial: immunological memory without a memory T cell. Trends Immunol. 2008;29:405–11.PubMedCrossRef Bell EB, Westermann J. CD4 memory T cells on trial: immunological memory without a memory T cell. Trends Immunol. 2008;29:405–11.PubMedCrossRef
18.
Zurück zum Zitat Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, et al. Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med. 2004;200:255–60.PubMedCrossRef Macallan DC, Wallace D, Zhang Y, De Lara C, Worth AT, Ghattas H, et al. Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J Exp Med. 2004;200:255–60.PubMedCrossRef
19.
Zurück zum Zitat Gerlach C, van Heijst JW, Schumacher TN. The descent of memory T cells. Ann N Y Acad Sci. 2011;1217:139–53.PubMedCrossRef Gerlach C, van Heijst JW, Schumacher TN. The descent of memory T cells. Ann N Y Acad Sci. 2011;1217:139–53.PubMedCrossRef
20.
Zurück zum Zitat Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101:4260–6.PubMedCrossRef Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101:4260–6.PubMedCrossRef
21.
Zurück zum Zitat Harari A, Enders FB, Cellerai C, Bart PA, Pantaleo G. Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure. J Virol. 2009;83:2862–71.PubMedCrossRef Harari A, Enders FB, Cellerai C, Bart PA, Pantaleo G. Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure. J Virol. 2009;83:2862–71.PubMedCrossRef
22.
Zurück zum Zitat Dunne PJ, Belaramani L, Fletcher JM, Fernandez de Mattos S, Lawrenz M, Soares MV, et al. Quiescence and functional reprogramming of Epstein–Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood. 2005;106:558–65.PubMedCrossRef Dunne PJ, Belaramani L, Fletcher JM, Fernandez de Mattos S, Lawrenz M, Soares MV, et al. Quiescence and functional reprogramming of Epstein–Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood. 2005;106:558–65.PubMedCrossRef
23.
Zurück zum Zitat Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing. 2008;5:6.PubMedCrossRef Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing. 2008;5:6.PubMedCrossRef
24.
Zurück zum Zitat Harari A, Vallelian F, Pantaleo G. Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur J Immunol. 2004;34:3525–33.PubMedCrossRef Harari A, Vallelian F, Pantaleo G. Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur J Immunol. 2004;34:3525–33.PubMedCrossRef
25.
Zurück zum Zitat Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008;73:975–83.PubMed Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A. 2008;73:975–83.PubMed
26.
Zurück zum Zitat Ilonen J, Surcel HM, Käär ML. Abnormalities within CD4 and CD8 T lymphocytes subsets in type 1 (insulin-dependent) diabetes. Clin Exp Immunol. 1991;85:278–81.PubMedCrossRef Ilonen J, Surcel HM, Käär ML. Abnormalities within CD4 and CD8 T lymphocytes subsets in type 1 (insulin-dependent) diabetes. Clin Exp Immunol. 1991;85:278–81.PubMedCrossRef
27.
Zurück zum Zitat Smerdon RA, Peakman M, Hussain MJ, Alviggi L, Watkins PJ, Leslie RD, et al. Increase in simultaneous coexpression of naive and memory lymphocyte markers at diagnosis of IDDM. Diabetes. 1993;42:127–33.PubMedCrossRef Smerdon RA, Peakman M, Hussain MJ, Alviggi L, Watkins PJ, Leslie RD, et al. Increase in simultaneous coexpression of naive and memory lymphocyte markers at diagnosis of IDDM. Diabetes. 1993;42:127–33.PubMedCrossRef
28.
Zurück zum Zitat Rowe PA, Campbell-Thompson ML, Schatz DA, Atkinson MA. The pancreas in human type 1 diabetes. Semin Immunopathol. 2011;33:29–43.PubMedCrossRef Rowe PA, Campbell-Thompson ML, Schatz DA, Atkinson MA. The pancreas in human type 1 diabetes. Semin Immunopathol. 2011;33:29–43.PubMedCrossRef
30.
Zurück zum Zitat Kowluru RA, Chan PS. Metabolic memory in diabetes—from in vitro oddity to in vivo problem: role of apoptosis. Brain Res Bull. 2010;81:297–302.PubMedCrossRef Kowluru RA, Chan PS. Metabolic memory in diabetes—from in vitro oddity to in vivo problem: role of apoptosis. Brain Res Bull. 2010;81:297–302.PubMedCrossRef
31.
Zurück zum Zitat Gu N, Tsuda M, Matsunaga T, Adachi T, Yasuda K, Ishihara A, et al. Glucose regulation of dipeptidyl peptidase IV gene expression is mediated by hepatocyte nuclear factor-1alpha in epithelial intestinal cells. Clin Exp Pharmacol Physiol. 2008;35:1433–9.PubMed Gu N, Tsuda M, Matsunaga T, Adachi T, Yasuda K, Ishihara A, et al. Glucose regulation of dipeptidyl peptidase IV gene expression is mediated by hepatocyte nuclear factor-1alpha in epithelial intestinal cells. Clin Exp Pharmacol Physiol. 2008;35:1433–9.PubMed
32.
Zurück zum Zitat Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;94:3171–82.PubMedCrossRef Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;94:3171–82.PubMedCrossRef
Metadaten
Titel
Altered Proportions of Naïve, Central Memory and Terminally Differentiated Central Memory Subsets among CD4+ and CD8+ T Cells Expressing CD26 in Patients with Type 1 Diabetes
verfasst von
Elena Matteucci
Massimo Ghimenti
Serena Di Beo
Ottavio Giampietro
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 6/2011
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-011-9573-z

Weitere Artikel der Ausgabe 6/2011

Journal of Clinical Immunology 6/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.