Skip to main content
Erschienen in: Brain Structure and Function 6/2016

12.07.2015 | Original Article

Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks

verfasst von: Eleonora Vannini, Laura Restani, Marta Pietrasanta, Alessandro Panarese, Alberto Mazzoni, Ornella Rossetto, Silvia Middei, Silvestro Micera, Matteo Caleo

Erschienen in: Brain Structure and Function | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abubakr A, Wambacq I (2003) The localizing value of auditory event-related potentials (P300) in patients with medically intractable temporal lobe epilepsy. Epilepsy Behav 4:692–701 S1525505003002336 CrossRefPubMed Abubakr A, Wambacq I (2003) The localizing value of auditory event-related potentials (P300) in patients with medically intractable temporal lobe epilepsy. Epilepsy Behav 4:692–701 S1525505003002336 CrossRefPubMed
Zurück zum Zitat Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMed Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMed
Zurück zum Zitat Baldini S, Restani L, Baroncelli L, Coltelli M, Franco R, Cenni MC, Maffei L, Berardi N (2013) Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J Neurosci 33:11715–11723. doi:10.1523/JNEUROSCI.3541-12.2013 CrossRefPubMed Baldini S, Restani L, Baroncelli L, Coltelli M, Franco R, Cenni MC, Maffei L, Berardi N (2013) Enriched early life experiences reduce adult anxiety-like behavior in rats: a role for insulin-like growth factor 1. J Neurosci 33:11715–11723. doi:10.​1523/​JNEUROSCI.​3541-12.​2013 CrossRefPubMed
Zurück zum Zitat Baroncelli L, Bonaccorsi J, Milanese M, Bonifacino T, Giribaldi F, Manno I, Cenni MC, Berardi N, Bonanno G, Maffei L, Sale A (2012) Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components. Neuropharmacology 62:2388–2397CrossRefPubMed Baroncelli L, Bonaccorsi J, Milanese M, Bonifacino T, Giribaldi F, Manno I, Cenni MC, Berardi N, Bonanno G, Maffei L, Sale A (2012) Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components. Neuropharmacology 62:2388–2397CrossRefPubMed
Zurück zum Zitat Caleo M, Medini P, von Bartheld CS, Maffei L (2003) Provision of brain-derived neurotrophic factor via anterograde transport from the eye preserves the physiological responses of axotomized geniculate neurons. J Neurosci 23:287–296 23/1/287 PubMed Caleo M, Medini P, von Bartheld CS, Maffei L (2003) Provision of brain-derived neurotrophic factor via anterograde transport from the eye preserves the physiological responses of axotomized geniculate neurons. J Neurosci 23:287–296 23/1/287 PubMed
Zurück zum Zitat Caleo M, Restani L, Gianfranceschi L, Costantin L, Rossi C, Rossetto O, Montecucco C, Maffei L (2007) Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J Neurosci 27:4530–4540 27/17/453010.1523/JNEUROSCI.0772-07.2007 CrossRefPubMed Caleo M, Restani L, Gianfranceschi L, Costantin L, Rossi C, Rossetto O, Montecucco C, Maffei L (2007) Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity. J Neurosci 27:4530–4540 27/17/453010.1523/JNEUROSCI.0772-07.2007 CrossRefPubMed
Zurück zum Zitat Contreras D, Palmer L (2003) Response to contrast of electrophysiologically defined cell classes in primary visual cortex. J Neurosci 23:6936–6945 23/17/6936 PubMed Contreras D, Palmer L (2003) Response to contrast of electrophysiologically defined cell classes in primary visual cortex. J Neurosci 23:6936–6945 23/17/6936 PubMed
Zurück zum Zitat Corradini I, Donzelli A, Antonucci F, Welzl H, Loos M, Martucci R, De Astis S, Pattini L, Inverardi F, Wolfer D, Caleo M, Bozzi Y, Verderio C, Frassoni C, Braida D, Clerici M, Lipp HP, Sala M, Matteoli M (2014) Epileptiform activity and cognitive deficits in SNAP-25(±) mice are normalized by antiepileptic drugs. Cereb Cortex 24:364–376. doi:10.1093/cercor/bhs316 CrossRefPubMed Corradini I, Donzelli A, Antonucci F, Welzl H, Loos M, Martucci R, De Astis S, Pattini L, Inverardi F, Wolfer D, Caleo M, Bozzi Y, Verderio C, Frassoni C, Braida D, Clerici M, Lipp HP, Sala M, Matteoli M (2014) Epileptiform activity and cognitive deficits in SNAP-25(±) mice are normalized by antiepileptic drugs. Cereb Cortex 24:364–376. doi:10.​1093/​cercor/​bhs316 CrossRefPubMed
Zurück zum Zitat Djurisic M, Vidal GS, Mann M, Aharon A, Kim T, Ferrao Santos A, Zuo Y, Hubener M, Shatz CJ (2013) PirB regulates a structural substrate for cortical plasticity. Proc Natl Acad Sci USA 110:20771–20776. doi:10.1073/pnas.1321092110 Djurisic M, Vidal GS, Mann M, Aharon A, Kim T, Ferrao Santos A, Zuo Y, Hubener M, Shatz CJ (2013) PirB regulates a structural substrate for cortical plasticity. Proc Natl Acad Sci USA 110:20771–20776. doi:10.​1073/​pnas.​1321092110
Zurück zum Zitat Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100 0896-6273(91)90077-D CrossRefPubMed Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100 0896-6273(91)90077-D CrossRefPubMed
Zurück zum Zitat Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720 0042-6989(94)90210-0 CrossRefPubMed Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720 0042-6989(94)90210-0 CrossRefPubMed
Zurück zum Zitat Farisello P, Boido D, Nieus T, Medrihan L, Cesca F, Valtorta F, Baldelli P, Benfenati F (2013) Synaptic and extrasynaptic origin of the excitation/inhibition imbalance in the hippocampus of synapsin I/II/III knockout mice. Cereb Cortex 23:581–593. doi:10.1093/cercor/bhs041 CrossRefPubMed Farisello P, Boido D, Nieus T, Medrihan L, Cesca F, Valtorta F, Baldelli P, Benfenati F (2013) Synaptic and extrasynaptic origin of the excitation/inhibition imbalance in the hippocampus of synapsin I/II/III knockout mice. Cereb Cortex 23:581–593. doi:10.​1093/​cercor/​bhs041 CrossRefPubMed
Zurück zum Zitat Ferrari E, Gu C, Niranjan D, Restani L, Rasetti-Escargueil C, Obara I, Geranton SM, Arsenault J, Goetze TA, Harper CB, Nguyen TH, Maywood E, O’Brien J, Schiavo G, Wheeler DW, Meunier FA, Hastings M, Edwardson JM, Sesardic D, Caleo M, Hunt SP, Davletov B (2013) Synthetic self-assembling clostridial chimera for modulation of sensory functions. Bioconjug Chem 24:1750–1759. doi:10.1021/bc4003103 CrossRefPubMedPubMedCentral Ferrari E, Gu C, Niranjan D, Restani L, Rasetti-Escargueil C, Obara I, Geranton SM, Arsenault J, Goetze TA, Harper CB, Nguyen TH, Maywood E, O’Brien J, Schiavo G, Wheeler DW, Meunier FA, Hastings M, Edwardson JM, Sesardic D, Caleo M, Hunt SP, Davletov B (2013) Synthetic self-assembling clostridial chimera for modulation of sensory functions. Bioconjug Chem 24:1750–1759. doi:10.​1021/​bc4003103 CrossRefPubMedPubMedCentral
Zurück zum Zitat Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252PubMed Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252PubMed
Zurück zum Zitat Gianfranceschi L, Siciliano R, Walls J, Morales B, Kirkwood A, Huang ZJ, Tonegawa S, Maffei L (2003) Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci USA 100(12486–12491):1934. doi:10.1073/pnas.1934836100836100 Gianfranceschi L, Siciliano R, Walls J, Morales B, Kirkwood A, Huang ZJ, Tonegawa S, Maffei L (2003) Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci USA 100(12486–12491):1934. doi:10.​1073/​pnas.​1934836100836100​
Zurück zum Zitat Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79:1–4 S0165027097001635 CrossRefPubMed Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79:1–4 S0165027097001635 CrossRefPubMed
Zurück zum Zitat Hagemann G, Hoeller M, Bruehl C, Lutzenburg M, Witte OW (1999) Effects of tetanus toxin on functional inhibition after injection in separate cortical areas in rat. Brain Res 818:127–134 S0006-8993(98)01293-1 CrossRefPubMed Hagemann G, Hoeller M, Bruehl C, Lutzenburg M, Witte OW (1999) Effects of tetanus toxin on functional inhibition after injection in separate cortical areas in rat. Brain Res 818:127–134 S0006-8993(98)01293-1 CrossRefPubMed
Zurück zum Zitat Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371. doi:10.1523/JNEUROSCI.2233-09.2010 CrossRefPubMed Harauzov A, Spolidoro M, DiCristo G, De Pasquale R, Cancedda L, Pizzorusso T, Viegi A, Berardi N, Maffei L (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371. doi:10.​1523/​JNEUROSCI.​2233-09.​2010 CrossRefPubMed
Zurück zum Zitat Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex Cell 98:739–755 S0092-8674(00)81509-3 PubMed Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex Cell 98:739–755 S0092-8674(00)81509-3 PubMed
Zurück zum Zitat Jefferys J, Walker M (2006) Tetanus toxin model of focal epilepsy. In: Pitkanen A, Schwartzkroin P, Moshe´ S (eds) Models of seizures and epilepsy. Elsevier Academic Press, Amsterdam, pp 407–414 Jefferys J, Walker M (2006) Tetanus toxin model of focal epilepsy. In: Pitkanen A, Schwartzkroin P, Moshe´ S (eds) Models of seizures and epilepsy. Elsevier Academic Press, Amsterdam, pp 407–414
Zurück zum Zitat Louis ED, Williamson PD, Darcey TM (1990) Chronic focal epilepsy induced by microinjection of tetanus toxin into the cat motor cortex. Electroencephalogr Clin Neurophysiol 75:548–557CrossRefPubMed Louis ED, Williamson PD, Darcey TM (1990) Chronic focal epilepsy induced by microinjection of tetanus toxin into the cat motor cortex. Electroencephalogr Clin Neurophysiol 75:548–557CrossRefPubMed
Zurück zum Zitat Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, Maffei L, Caleo M (2010) Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res 88:3048–3059. doi:10.1002/jnr.22461 CrossRefPubMed Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, Maffei L, Caleo M (2010) Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res 88:3048–3059. doi:10.​1002/​jnr.​22461 CrossRefPubMed
Zurück zum Zitat Masuoka LK, Anderson AW, Gore JC, McCarthy G, Spencer DD, Novotny EJ (1999) Functional magnetic resonance imaging identifies abnormal visual cortical function in patients with occipital lobe epilepsy. Epilepsia 40:1248–1253CrossRefPubMed Masuoka LK, Anderson AW, Gore JC, McCarthy G, Spencer DD, Novotny EJ (1999) Functional magnetic resonance imaging identifies abnormal visual cortical function in patients with occipital lobe epilepsy. Epilepsia 40:1248–1253CrossRefPubMed
Zurück zum Zitat Najlerahim A, Williams SF, Pearson RC, Jefferys JG (1992) Increased expression of GAD mRNA during the chronic epileptic syndrome due to intrahippocampal tetanus toxin. Exp Brain Res 90:332–342CrossRefPubMed Najlerahim A, Williams SF, Pearson RC, Jefferys JG (1992) Increased expression of GAD mRNA during the chronic epileptic syndrome due to intrahippocampal tetanus toxin. Exp Brain Res 90:332–342CrossRefPubMed
Zurück zum Zitat Pietrasanta M, Restani L, Cerri C, Olcese U, Medini P, Caleo M (2014) A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex Eur J Neurosci. doi:10.1111/ejn.12573 PubMed Pietrasanta M, Restani L, Cerri C, Olcese U, Medini P, Caleo M (2014) A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex Eur J Neurosci. doi:10.​1111/​ejn.​12573 PubMed
Zurück zum Zitat Pinto L, Drechsel D, Schmid MT, Ninkovic J, Irmler M, Brill MS, Restani L, Gianfranceschi L, Cerri C, Weber SN, Tarabykin V, Baer K, Guillemot F, Beckers J, Zecevic N, Dehay C, Caleo M, Schorle H, Gotz M (2009) AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat Neurosci 12:1229–1237. doi:10.1038/nn.2399 CrossRefPubMed Pinto L, Drechsel D, Schmid MT, Ninkovic J, Irmler M, Brill MS, Restani L, Gianfranceschi L, Cerri C, Weber SN, Tarabykin V, Baer K, Guillemot F, Beckers J, Zecevic N, Dehay C, Caleo M, Schorle H, Gotz M (2009) AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nat Neurosci 12:1229–1237. doi:10.​1038/​nn.​2399 CrossRefPubMed
Zurück zum Zitat Pitkanen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H, Loscher W, Mody I, Schmidt D (2013) Issues related to development of antiepileptogenic therapies. Epilepsia 54(Suppl 4):35–43. doi:10.1111/epi.12297 CrossRefPubMedPubMedCentral Pitkanen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, Jensen FE, Kaminski RM, Kapur J, Klitgaard H, Loscher W, Mody I, Schmidt D (2013) Issues related to development of antiepileptogenic therapies. Epilepsia 54(Suppl 4):35–43. doi:10.​1111/​epi.​12297 CrossRefPubMedPubMedCentral
Zurück zum Zitat Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39:3071–3081 S0042-6989(99)00022-X CrossRefPubMed Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39:3071–3081 S0042-6989(99)00022-X CrossRefPubMed
Zurück zum Zitat Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209 S0042-6989(00)00081-X CrossRefPubMed Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209 S0042-6989(00)00081-X CrossRefPubMed
Zurück zum Zitat Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 73:285–296CrossRefPubMed Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 73:285–296CrossRefPubMed
Zurück zum Zitat Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10:1275–1284PubMedPubMedCentral Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10:1275–1284PubMedPubMedCentral
Zurück zum Zitat Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L (2007) Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 25:2741–2754. doi:10.1111/j.1460-9568.2007.05528.x CrossRefPubMed Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L (2007) Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 25:2741–2754. doi:10.​1111/​j.​1460-9568.​2007.​05528.​x CrossRefPubMed
Zurück zum Zitat Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766PubMed Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766PubMed
Zurück zum Zitat Schwarzer C, Sperk G (1995) Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69:705–709 0306-4522(95)00348-M CrossRefPubMed Schwarzer C, Sperk G (1995) Hippocampal granule cells express glutamic acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69:705–709 0306-4522(95)00348-M CrossRefPubMed
Zurück zum Zitat Singh SP, He X, McNamara JO, Danzer SC (2013) Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis. Hippocampus 23:1309–1320. doi:10.1002/hipo.22169 CrossRefPubMed Singh SP, He X, McNamara JO, Danzer SC (2013) Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis. Hippocampus 23:1309–1320. doi:10.​1002/​hipo.​22169 CrossRefPubMed
Zurück zum Zitat Whittington MA, Jefferys JG (1994) Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat. J Physiol 481(Pt 3):593–604CrossRefPubMedPubMedCentral Whittington MA, Jefferys JG (1994) Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat. J Physiol 481(Pt 3):593–604CrossRefPubMedPubMedCentral
Zurück zum Zitat Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152. doi:10.1126/scitranslmed.3004190 Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152. doi:10.​1126/​scitranslmed.​3004190
Metadaten
Titel
Altered sensory processing and dendritic remodeling in hyperexcitable visual cortical networks
verfasst von
Eleonora Vannini
Laura Restani
Marta Pietrasanta
Alessandro Panarese
Alberto Mazzoni
Ornella Rossetto
Silvia Middei
Silvestro Micera
Matteo Caleo
Publikationsdatum
12.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1080-1

Weitere Artikel der Ausgabe 6/2016

Brain Structure and Function 6/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.