Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 2/2011

01.04.2011 | Mitochondrial Medicine

Altering the balance between healthy and mutated mitochondrial DNA

verfasst von: Paul M. Smith, Robert N. Lightowlers

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Pathogenic mutations of the mitochondrial genome are frequently found to co-exist with wild-type mtDNA molecules, a state known as heteroplasmy. In most disease cases, the mutation is recessive with manifestation of a clinical phenotype occurring when the proportion of mutated mtDNA exceeds a high threshold. The concept of increasing the ratio of healthy to mutated mtDNA as a means to correcting the biochemical defect has received much attention. A number of strategies are highlighted in this article, including manipulation of the mitochondrial genome by antigenomic drugs or restriction endonucleases, zinc finger peptide-targeted nucleases and exercise-induced gene shifting. The feasibility of these approaches has been demonstrated in a number of models, however more work is necessary before use in human patients.
Literatur
Zurück zum Zitat Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRef Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRef
Zurück zum Zitat Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Gene Ther 14:1309–1318PubMed Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model. Gene Ther 14:1309–1318PubMed
Zurück zum Zitat Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 102:14392–14397PubMedCrossRef Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 102:14392–14397PubMedCrossRef
Zurück zum Zitat Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928PubMedCrossRef Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther 6:1919–1928PubMedCrossRef
Zurück zum Zitat Chinnery PF, Johnson MA, Wardell TM et al (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48:188–193PubMedCrossRef Chinnery PF, Johnson MA, Wardell TM et al (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48:188–193PubMedCrossRef
Zurück zum Zitat Clark KM, Bindoff LA, Lightowlers RN et al (1997) Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 16:222–224PubMedCrossRef Clark KM, Bindoff LA, Lightowlers RN et al (1997) Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 16:222–224PubMedCrossRef
Zurück zum Zitat Dassa EP, Dufour E, Goncalves S et al (2009) Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med 1:30–36PubMedCrossRef Dassa EP, Dufour E, Goncalves S et al (2009) Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med 1:30–36PubMedCrossRef
Zurück zum Zitat King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52:811–819PubMedCrossRef King MP, Attardi G (1988) Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52:811–819PubMedCrossRef
Zurück zum Zitat Manfredi G, Gupta N, Vazquez-Memije ME et al (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391PubMedCrossRef Manfredi G, Gupta N, Vazquez-Memije ME et al (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391PubMedCrossRef
Zurück zum Zitat McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease–its impact, etiology, and pathology. Curr Top Dev Biol 77:113–155PubMedCrossRef McFarland R, Taylor RW, Turnbull DM (2007) Mitochondrial disease–its impact, etiology, and pathology. Curr Top Dev Biol 77:113–155PubMedCrossRef
Zurück zum Zitat Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103:19689–19694PubMedCrossRef Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci USA 103:19689–19694PubMedCrossRef
Zurück zum Zitat Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36: 3926–38 Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36: 3926–38
Zurück zum Zitat Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863PubMedCrossRef Muratovska A, Lightowlers RN, Taylor RW et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29:1852–1863PubMedCrossRef
Zurück zum Zitat Murphy JL, Blakely EL, Schaefer AM et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840PubMedCrossRef Murphy JL, Blakely EL, Schaefer AM et al (2008) Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 131:2832–2840PubMedCrossRef
Zurück zum Zitat Ross GF, Smith PM, McGregor A, Turnbull DM, Lightowlers RN (2003) Synthesis of trifunctional PNA-benzophenone derivatives for mitochondrial targeting, selective DNA binding, and photo-cross-linking. Bioconjug Chem 14:962–966PubMedCrossRef Ross GF, Smith PM, McGregor A, Turnbull DM, Lightowlers RN (2003) Synthesis of trifunctional PNA-benzophenone derivatives for mitochondrial targeting, selective DNA binding, and photo-cross-linking. Bioconjug Chem 14:962–966PubMedCrossRef
Zurück zum Zitat Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56:662–669PubMedCrossRef Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56:662–669PubMedCrossRef
Zurück zum Zitat Shoubridge EA, Johns T, Karpati G (1997) Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet 6:2239–2242PubMedCrossRef Shoubridge EA, Johns T, Karpati G (1997) Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet 6:2239–2242PubMedCrossRef
Zurück zum Zitat Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN (2004) Strategies for treating disorders of the mitochondrial genome. Biochim Biophys Acta 1659:232–239PubMedCrossRef Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN (2004) Strategies for treating disorders of the mitochondrial genome. Biochim Biophys Acta 1659:232–239PubMedCrossRef
Zurück zum Zitat Spelbrink JN, Zwart R, Van Galen MJ, Van den Bogert C (1997) Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells. Curr Genet 32:115–124PubMedCrossRef Spelbrink JN, Zwart R, Van Galen MJ, Van den Bogert C (1997) Preferential amplification and phenotypic selection in a population of deleted and wild-type mitochondrial DNA in cultured cells. Curr Genet 32:115–124PubMedCrossRef
Zurück zum Zitat Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099PubMedCrossRef Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099PubMedCrossRef
Zurück zum Zitat Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812PubMedCrossRef Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812PubMedCrossRef
Zurück zum Zitat Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 8:1047–1052PubMedCrossRef Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA (1999) Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 8:1047–1052PubMedCrossRef
Zurück zum Zitat Taivassalo T, Shoubridge EA, Chen J et al (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141PubMedCrossRef Taivassalo T, Shoubridge EA, Chen J et al (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50:133–141PubMedCrossRef
Zurück zum Zitat Taivassalo T, Gardner JL, Taylor RW et al (2006a) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401PubMedCrossRef Taivassalo T, Gardner JL, Taylor RW et al (2006a) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401PubMedCrossRef
Zurück zum Zitat Taivassalo T, Gardner JL, Taylor RW et al (2006b) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401PubMedCrossRef Taivassalo T, Gardner JL, Taylor RW et al (2006b) Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 129:3391–3401PubMedCrossRef
Zurück zum Zitat Tanaka M, Borgeld HJ, Zhang J et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease Smal into mitochondria. J Biomed Sci 9:534–541PubMed Tanaka M, Borgeld HJ, Zhang J et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease Smal into mitochondria. J Biomed Sci 9:534–541PubMed
Metadaten
Titel
Altering the balance between healthy and mutated mitochondrial DNA
verfasst von
Paul M. Smith
Robert N. Lightowlers
Publikationsdatum
01.04.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 2/2011
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-010-9122-6

Weitere Artikel der Ausgabe 2/2011

Journal of Inherited Metabolic Disease 2/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.