Skip to main content
Erschienen in: Clinical & Experimental Metastasis 5-6/2018

29.05.2018 | Research Paper

Alternative splicing and cancer metastasis: prognostic and therapeutic applications

verfasst von: Diego M. Marzese, Ayla O. Manughian-Peter, Javier I. J. Orozco, Dave S. B. Hoon

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 5-6/2018

Einloggen, um Zugang zu erhalten

Abstract

Metastatic cells exhibit an extraordinary phenotypic plasticity, not only in adapting to unfamiliar microenvironments but also in surviving aggressive treatments and immune responses. A major source of phenotypic variability is alternative splicing (AS) of the pre-messenger RNA. This process is catalyzed by one of the most complex pieces of cellular molecular regulatory events, the spliceosome, which is composed of ribonucleoproteins and polypeptides termed spliceosome factors. With strong evidence indicating that AS affects nearly all genes encoded by the human genome, aberrant AS programs have a significant impact on cancer cell development and progression. In this review, we present insights about the genomic and epigenomic factors affecting AS, summarize the most recent findings linking aberrant AS to metastatic progression, and highlight potential prognostic and therapeutic applications.
Literatur
1.
Zurück zum Zitat Feinberg AP, Koldobskiy MA, Gondor A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299PubMedPubMedCentralCrossRef Feinberg AP, Koldobskiy MA, Gondor A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Ghigna C et al (2010) Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol 7(4):495–503PubMedCrossRef Ghigna C et al (2010) Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol 7(4):495–503PubMedCrossRef
5.
Zurück zum Zitat Tang JY et al (2013) Alternative splicing for diseases, cancers, drugs, and databases. Sci World J 2013:703568 Tang JY et al (2013) Alternative splicing for diseases, cancers, drugs, and databases. Sci World J 2013:703568
6.
Zurück zum Zitat Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 24(5):479–488PubMedCrossRef Koo T, Wood MJ (2013) Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 24(5):479–488PubMedCrossRef
7.
Zurück zum Zitat Faravelli I et al (2015) Spinal muscular atrophy-recent therapeutic advances for an old challenge. Nat Rev Neurol 11(6):351–359PubMedCrossRef Faravelli I et al (2015) Spinal muscular atrophy-recent therapeutic advances for an old challenge. Nat Rev Neurol 11(6):351–359PubMedCrossRef
8.
Zurück zum Zitat Bonnal S, Vigevani L, Valcarcel J (2012) The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11(11):847–859PubMedCrossRef Bonnal S, Vigevani L, Valcarcel J (2012) The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov 11(11):847–859PubMedCrossRef
11.
Zurück zum Zitat Zhang J, Manley JL (2013) Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3(11):1228–1237PubMedCrossRef Zhang J, Manley JL (2013) Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3(11):1228–1237PubMedCrossRef
13.
Zurück zum Zitat DeBoever C et al (2015) Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 11(3):e1004105PubMedPubMedCentralCrossRef DeBoever C et al (2015) Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 11(3):e1004105PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Alsafadi S et al (2016) Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 7:10615PubMedPubMedCentralCrossRef Alsafadi S et al (2016) Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 7:10615PubMedPubMedCentralCrossRef
16.
17.
Zurück zum Zitat Okeyo-Owuor T et al (2015) U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia 29(4):909–917PubMedCrossRef Okeyo-Owuor T et al (2015) U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia 29(4):909–917PubMedCrossRef
19.
Zurück zum Zitat Zhang J et al (2015) Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci USA 112(34):4726–4734CrossRef Zhang J et al (2015) Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci USA 112(34):4726–4734CrossRef
22.
Zurück zum Zitat Lev Maor G, Yearim A, Ast G (2015) The alternative role of DNA methylation in splicing regulation. Trends Genet 31(5):274–280PubMedCrossRef Lev Maor G, Yearim A, Ast G (2015) The alternative role of DNA methylation in splicing regulation. Trends Genet 31(5):274–280PubMedCrossRef
23.
Zurück zum Zitat Zhou HL et al (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42(2):701–713PubMedCrossRef Zhou HL et al (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42(2):701–713PubMedCrossRef
25.
Zurück zum Zitat Wong JJ et al (2014) Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Cancer Sci 105(11):1457–1463PubMedPubMedCentralCrossRef Wong JJ et al (2014) Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Cancer Sci 105(11):1457–1463PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Marzese DM et al (2015) Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res 28(1):82–93PubMedCrossRef Marzese DM et al (2015) Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res 28(1):82–93PubMedCrossRef
27.
Zurück zum Zitat Maunakea AK et al (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269PubMedPubMedCentralCrossRef Maunakea AK et al (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Saint-Andre V et al (2011) Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol 18(3):337–344PubMedCrossRef Saint-Andre V et al (2011) Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol 18(3):337–344PubMedCrossRef
29.
Zurück zum Zitat Warzecha CC, Carstens RP (2012) Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 22(5–6):417–427PubMedPubMedCentralCrossRef Warzecha CC, Carstens RP (2012) Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT). Semin Cancer Biol 22(5–6):417–427PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33(46):5311–5318PubMedCrossRef Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33(46):5311–5318PubMedCrossRef
31.
32.
Zurück zum Zitat Zhang P et al (2013) Exon 4 deletion variant of epidermal growth factor receptor enhances invasiveness and cisplatin resistance in epithelial ovarian cancer. Carcinogenesis 34(11):2639–2646PubMedCrossRef Zhang P et al (2013) Exon 4 deletion variant of epidermal growth factor receptor enhances invasiveness and cisplatin resistance in epithelial ovarian cancer. Carcinogenesis 34(11):2639–2646PubMedCrossRef
33.
Zurück zum Zitat Solomon H, Sharon M, Rotter V (2014) Modulation of alternative splicing contributes to cancer development: focusing on p53 isoforms, p53beta and p53gamma. Cell Death Differ 21(9):1347–1349PubMedPubMedCentralCrossRef Solomon H, Sharon M, Rotter V (2014) Modulation of alternative splicing contributes to cancer development: focusing on p53 isoforms, p53beta and p53gamma. Cell Death Differ 21(9):1347–1349PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Avery-Kiejda KA et al (2014) The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis 35(3):586–596CrossRefPubMed Avery-Kiejda KA et al (2014) The relative mRNA expression of p53 isoforms in breast cancer is associated with clinical features and outcome. Carcinogenesis 35(3):586–596CrossRefPubMed
35.
Zurück zum Zitat Jin W et al (2000) Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res 60(5):1221–1224PubMed Jin W et al (2000) Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res 60(5):1221–1224PubMed
36.
Zurück zum Zitat He X et al (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3:e84PubMedPubMedCentralCrossRef He X et al (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3:e84PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat He X et al (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26(34):4961–4968PubMedPubMedCentralCrossRef He X et al (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26(34):4961–4968PubMedPubMedCentralCrossRef
38.
39.
Zurück zum Zitat Silipo M, Gautrey H, Tyson-Capper A (2015) Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 7(5):388–401PubMedCrossRef Silipo M, Gautrey H, Tyson-Capper A (2015) Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 7(5):388–401PubMedCrossRef
40.
Zurück zum Zitat Pradella D et al (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16(1):8PubMedPubMedCentralCrossRef Pradella D et al (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16(1):8PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Warzecha CC et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29(19):3286–3300PubMedPubMedCentralCrossRef Warzecha CC et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29(19):3286–3300PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Das S, Krainer AR (2014) Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12(9):1195–1204PubMedPubMedCentralCrossRef Das S, Krainer AR (2014) Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12(9):1195–1204PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ghigna C et al (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 20(6):881–890PubMedCrossRef Ghigna C et al (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 20(6):881–890PubMedCrossRef
47.
Zurück zum Zitat Ben-Hur V et al (2013) S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep 3(1):103–115PubMedCrossRef Ben-Hur V et al (2013) S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep 3(1):103–115PubMedCrossRef
48.
Zurück zum Zitat Ishii H et al (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289(40):27386–27399PubMedPubMedCentralCrossRef Ishii H et al (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289(40):27386–27399PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Yae T et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883CrossRefPubMed Yae T et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883CrossRefPubMed
50.
Zurück zum Zitat Chen L et al (2017) Snail driving alternative splicing of CD44 by ESRP1 enhances invasion and migration in epithelial ovarian cancer. Cell Physiol Biochem 43(6):2489–2504PubMedCrossRef Chen L et al (2017) Snail driving alternative splicing of CD44 by ESRP1 enhances invasion and migration in epithelial ovarian cancer. Cell Physiol Biochem 43(6):2489–2504PubMedCrossRef
52.
Zurück zum Zitat Ryan MC et al (2012) SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28(18):2385–2387PubMedPubMedCentralCrossRef Ryan MC et al (2012) SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28(18):2385–2387PubMedPubMedCentralCrossRef
53.
54.
Zurück zum Zitat Darman RB et al (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep 13(5):1033–1045PubMedCrossRef Darman RB et al (2015) Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep 13(5):1033–1045PubMedCrossRef
57.
Zurück zum Zitat Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Quesada V et al (2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44(1):47–52PubMedCrossRef Quesada V et al (2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44(1):47–52PubMedCrossRef
59.
Zurück zum Zitat Kaida D et al (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3(9):576–583PubMedCrossRef Kaida D et al (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3(9):576–583PubMedCrossRef
60.
Zurück zum Zitat Kotake Y et al (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3(9):570–575PubMedCrossRef Kotake Y et al (2007) Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3(9):570–575PubMedCrossRef
61.
Zurück zum Zitat Hasegawa M et al (2011) Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem Biol 6(3):229–233PubMedCrossRef Hasegawa M et al (2011) Identification of SAP155 as the target of GEX1A (herboxidiene), an antitumor natural product. ACS Chem Biol 6(3):229–233PubMedCrossRef
62.
Zurück zum Zitat Graveley BR, Maniatis T (1998) Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell 1(5):765–771PubMedCrossRef Graveley BR, Maniatis T (1998) Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol Cell 1(5):765–771PubMedCrossRef
64.
Zurück zum Zitat Twyffels L, Gueydan C, Kruys V (2011) Shuttling SR proteins: more than splicing factors. FEBS J 278(18):3246–3255PubMedCrossRef Twyffels L, Gueydan C, Kruys V (2011) Shuttling SR proteins: more than splicing factors. FEBS J 278(18):3246–3255PubMedCrossRef
65.
Zurück zum Zitat Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417(1):15–27CrossRefPubMed Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417(1):15–27CrossRefPubMed
66.
Zurück zum Zitat Araki S et al (2015) Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS ONE 10(1):e0116929PubMedPubMedCentralCrossRef Araki S et al (2015) Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLoS ONE 10(1):e0116929PubMedPubMedCentralCrossRef
67.
68.
Zurück zum Zitat Ohe K, Hagiwara M (2015) Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases. ACS Chem Biol 10(4):914–924PubMedCrossRef Ohe K, Hagiwara M (2015) Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases. ACS Chem Biol 10(4):914–924PubMedCrossRef
69.
Zurück zum Zitat Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140PubMedPubMedCentralCrossRef Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140PubMedPubMedCentralCrossRef
70.
71.
Zurück zum Zitat Dewaele M et al (2016) Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 126(1):68–84PubMedCrossRef Dewaele M et al (2016) Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 126(1):68–84PubMedCrossRef
72.
Zurück zum Zitat Castanotto D, Stein CA (2014) Antisense oligonucleotides in cancer. Curr Opin Oncol 26(6):584–589PubMedCrossRef Castanotto D, Stein CA (2014) Antisense oligonucleotides in cancer. Curr Opin Oncol 26(6):584–589PubMedCrossRef
74.
Zurück zum Zitat Peng Y-Q et al (2017) Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 10(4):646–651PubMedPubMedCentral Peng Y-Q et al (2017) Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 10(4):646–651PubMedPubMedCentral
75.
Zurück zum Zitat Bengtsson NE et al (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454PubMedPubMedCentralCrossRef Bengtsson NE et al (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Nguyen TH, Anegon I (2016) Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med 8(5):439–441PubMedPubMedCentralCrossRef Nguyen TH, Anegon I (2016) Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med 8(5):439–441PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Feng Y et al (2015) Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res 33(2):199–207PubMedCrossRef Feng Y et al (2015) Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res 33(2):199–207PubMedCrossRef
78.
Zurück zum Zitat Liao Y et al (2017) Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 8(18):30276–30287PubMedPubMedCentral Liao Y et al (2017) Targeting programmed cell death ligand 1 by CRISPR/Cas9 in osteosarcoma cells. Oncotarget 8(18):30276–30287PubMedPubMedCentral
81.
Zurück zum Zitat Zhou Q et al (2015) A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res 75(10):1949–1958PubMedCrossRef Zhou Q et al (2015) A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res 75(10):1949–1958PubMedCrossRef
82.
Zurück zum Zitat Bustos M et al (2018) Abstract P1-05-02: CRISPR/Cas9-guided editing of spliceosome factors enhances major histocompatibility complex proteins in triple-negative breast cancer. Can Res 78(4 Supplement):P1-05-02CrossRef Bustos M et al (2018) Abstract P1-05-02: CRISPR/Cas9-guided editing of spliceosome factors enhances major histocompatibility complex proteins in triple-negative breast cancer. Can Res 78(4 Supplement):P1-05-02CrossRef
83.
Zurück zum Zitat Eskens FA et al (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19(22):6296–6304PubMedCrossRef Eskens FA et al (2013) Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19(22):6296–6304PubMedCrossRef
84.
Zurück zum Zitat Hong DS et al (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32(3):436–444PubMedCrossRef Hong DS et al (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32(3):436–444PubMedCrossRef
85.
Zurück zum Zitat Seiler M et al (2018) H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24(4):497–504PubMedCrossRefPubMedCentral Seiler M et al (2018) H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24(4):497–504PubMedCrossRefPubMedCentral
86.
Zurück zum Zitat Bedikian AY et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma study group. J Clin Oncol 24(29):4738–4745PubMedCrossRef Bedikian AY et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma study group. J Clin Oncol 24(29):4738–4745PubMedCrossRef
87.
Zurück zum Zitat O’Brien S et al (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25(9):1114–1120PubMedCrossRef O’Brien S et al (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25(9):1114–1120PubMedCrossRef
88.
Zurück zum Zitat Chanan-Khan AA et al (2009) Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma 50(4):559–565PubMedCrossRef Chanan-Khan AA et al (2009) Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma 50(4):559–565PubMedCrossRef
89.
Zurück zum Zitat Chi KN et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28(27):4247–4254PubMedCrossRef Chi KN et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28(27):4247–4254PubMedCrossRef
90.
Zurück zum Zitat Beer TM et al (2017) Custirsen (OGX-011) combined with cabazitaxel and prednisone versus cabazitaxel and prednisone alone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel (AFFINITY): a randomised, open-label, international, phase 3 trial. Lancet Oncol 18(11):1532–1542PubMedCrossRef Beer TM et al (2017) Custirsen (OGX-011) combined with cabazitaxel and prednisone versus cabazitaxel and prednisone alone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxel (AFFINITY): a randomised, open-label, international, phase 3 trial. Lancet Oncol 18(11):1532–1542PubMedCrossRef
91.
Zurück zum Zitat Chi KN et al (2017) Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 18(4):473–485PubMedCrossRef Chi KN et al (2017) Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 18(4):473–485PubMedCrossRef
Metadaten
Titel
Alternative splicing and cancer metastasis: prognostic and therapeutic applications
verfasst von
Diego M. Marzese
Ayla O. Manughian-Peter
Javier I. J. Orozco
Dave S. B. Hoon
Publikationsdatum
29.05.2018
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 5-6/2018
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-018-9905-y

Weitere Artikel der Ausgabe 5-6/2018

Clinical & Experimental Metastasis 5-6/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.