Skip to main content
Erschienen in: European Radiology 3/2019

13.08.2018 | Oncology

Amid proton transfer (APT) and magnetization transfer (MT) MRI contrasts provide complimentary assessment of brain tumors similarly to proton magnetic resonance spectroscopy imaging (MRSI)

verfasst von: Changliang Su, Lingyun Zhao, Shihui Li, Jingjing Jiang, Kejia Cai, Jingjing Shi, Yihao Yao, Qilin Ao, Guiling Zhang, Nanxi Shen, Shan Hu, Jiaxuan Zhang, Yuanyuan Qin, Wenzhen Zhu

Erschienen in: European Radiology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Using MRSI as comparison, we aimed to explore the difference between amide proton transfer (APT) MRI and conventional semi-solid magnetization transfer ratio (MTR) MRI, and to investigate if molecular APT and structural MTR can provide complimentary information in assessing brain tumors.

Methods

Seventeen brain tumor patients and 17 age- and gender-matched volunteers were included and scanned with anatomical MRI, APT and MT-weighted MRI, and MRSI. Multi-voxel choline (Cho) and N-acetylaspartic acid (NAA) signals were quantified from MRSI and compared with MTR and MTRasym(3.5ppm) contrasts averaged from corresponding voxels. Correlations between contrasts were explored voxel-by-voxel by pooling values from all voxels into Pearson’s correlation analysis. Differences in correlation coefficients were tested with the Z-test (set at p<0.05).

Results

APT and MT provide good contrast and quantitative parameters in tumor imaging, as do the metabolite (Cho and NAA) maps. MTRasym(3.5ppm) significantly correlated with MTR (R=-0.61, p<0.0001), Cho (R=0.568, p<0.0001) and NAA (R=-0.619, p<0.0001) in tumors, and MTR also significantly correlated with Cho (R=-0.346, p<0.0001) and NAA (R=0.624, p<0.0001). In healthy volunteers, MTRasym(3.5ppm) was non-significantly correlated with MTR (R=-0.049, p=0.239), Cho (R=0.030, p=0.478) and NAA (R=-0.083, p=0.046). Significant correlations were found among MTR with Cho (R=0.199, p<0.0001) and NAA (R=0.263, p<0.0001) in the group of healthy volunteers with lower correlation R values than those in tumor patients.

Conclusions

APT and MT could provide independent and supplementary information for the comprehensive assessment of molecular and structural changes due to brain tumor cancerogenesis.

Key Points

• MTR asym(3.5ppm) positively correlated with Cho while negatively with NAA in tumors.
• MTR positively correlated with NAA while negatively with Cho in tumors.
• Combining APT/MT provides molecular and structural information similarly to MRSI.
Literatur
1.
Zurück zum Zitat Ramalho J, Ramalho M, AlObaidy M, Semelka RC (2016) Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration. Magn Reson Imaging 34(10):1355–1358 Ramalho J, Ramalho M, AlObaidy M, Semelka RC (2016) Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration. Magn Reson Imaging 34(10):1355–1358
2.
Zurück zum Zitat Thieme ME, Leeuwenburgh MM, Valdehueza ZD et al (2014) Diagnostic accuracy and patient acceptance of MRI in children with suspected appendicitis. Eur Radiol 24(3):630–637 Thieme ME, Leeuwenburgh MM, Valdehueza ZD et al (2014) Diagnostic accuracy and patient acceptance of MRI in children with suspected appendicitis. Eur Radiol 24(3):630–637
3.
Zurück zum Zitat Deo A, Fogel M, Cowper SE (2007) Nephrogenic systemic fibrosis: a population study examining the relationship of disease development to gadolinium exposure. Clin J Am Soc Nephrol 2(2):264–267CrossRefPubMed Deo A, Fogel M, Cowper SE (2007) Nephrogenic systemic fibrosis: a population study examining the relationship of disease development to gadolinium exposure. Clin J Am Soc Nephrol 2(2):264–267CrossRefPubMed
4.
Zurück zum Zitat Kuno H, Jara H, Buch K, Qureshi MM, Chapman MN, Sakai O (2017) Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents. Radiology 283(1):195–204 Kuno H, Jara H, Buch K, Qureshi MM, Chapman MN, Sakai O (2017) Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents. Radiology 283(1):195–204
5.
Zurück zum Zitat Kanda T, Oba H, Toyoda K, Kitajima K, Furui S (2016) Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn J Radiol 34(1):3–9 Kanda T, Oba H, Toyoda K, Kitajima K, Furui S (2016) Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn J Radiol 34(1):3–9
6.
Zurück zum Zitat Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232 Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232
7.
Zurück zum Zitat Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3):123–131CrossRefPubMed Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16(3):123–131CrossRefPubMed
8.
Zurück zum Zitat Nelson SJ (2003) Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2(5):497–507 Nelson SJ (2003) Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther 2(5):497–507
9.
Zurück zum Zitat Okumura A, Takenaka K, Nishimura Y et al (1999) The characterization of human brain tumor using magnetization transfer technique in magnetic resonance imaging. Neurol Res 21(3):250–254 Okumura A, Takenaka K, Nishimura Y et al (1999) The characterization of human brain tumor using magnetization transfer technique in magnetic resonance imaging. Neurol Res 21(3):250–254
10.
Zurück zum Zitat van Buchem MA, Steens SC, Vrooman HA et al (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol 22(4):762–766 van Buchem MA, Steens SC, Vrooman HA et al (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol 22(4):762–766
11.
Zurück zum Zitat Zhang H, Kang H, Zhao X et al (2016) Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development. Eur Radiol 26(10):3368–3376 Zhang H, Kang H, Zhao X et al (2016) Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development. Eur Radiol 26(10):3368–3376
12.
Zurück zum Zitat Kurki T, Lundbom N, Kalimo H, Valtonen S (1995) MR classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn Reson Imaging 13(4):501–511 Kurki T, Lundbom N, Kalimo H, Valtonen S (1995) MR classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn Reson Imaging 13(4):501–511
13.
Zurück zum Zitat Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126 Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126
14.
Zurück zum Zitat Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448 Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448
15.
Zurück zum Zitat Ma B, Blakeley JO, Hong X et al (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44(2):456–462 Ma B, Blakeley JO, Hong X et al (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44(2):456–462
16.
Zurück zum Zitat Park JE, Kim HS, Park KJ, Kim SJ, Kim JH, Smith SA (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with mr spectroscopy for biomarkers of tumor proliferation. Radiology 278(2):514–523 Park JE, Kim HS, Park KJ, Kim SJ, Kim JH, Smith SA (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with mr spectroscopy for biomarkers of tumor proliferation. Radiology 278(2):514–523
17.
Zurück zum Zitat Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38(5):1119–1128 Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38(5):1119–1128
18.
Zurück zum Zitat Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 51(2):616–622 Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. Neuroimage 51(2):616–622
20.
Zurück zum Zitat Pui MH (2000) Magnetization transfer analysis of brain tumor, infection, and infarction. J Magn Reson Imaging 12(3):395–399CrossRefPubMed Pui MH (2000) Magnetization transfer analysis of brain tumor, infection, and infarction. J Magn Reson Imaging 12(3):395–399CrossRefPubMed
21.
Zurück zum Zitat Kurki T, Lundbom N, Komu M, Kormano M (1996) Tissue characterization of intracranial tumors by magnetization transfer and spin-lattice relaxation parameters in vivo. J Magn Reson Imaging 6(4):573–579 Kurki T, Lundbom N, Komu M, Kormano M (1996) Tissue characterization of intracranial tumors by magnetization transfer and spin-lattice relaxation parameters in vivo. J Magn Reson Imaging 6(4):573–579
22.
Zurück zum Zitat Zheng Y, Wang X, Zhao X (2016) Magnetization transfer and amide proton transfer MRI of neonatal brain development. Biomed Res Int 2016:3052723PubMedPubMedCentral Zheng Y, Wang X, Zhao X (2016) Magnetization transfer and amide proton transfer MRI of neonatal brain development. Biomed Res Int 2016:3052723PubMedPubMedCentral
23.
Zurück zum Zitat Zhou J, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42(3):393–402CrossRefPubMedPubMedCentral Zhou J, Yan K, Zhu H (2012) A simple model for understanding the origin of the amide proton transfer MRI signal in tissue. Appl Magn Reson 42(3):393–402CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36(1):62–67 Gass A, Barker GJ, Kidd D et al (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36(1):62–67
25.
Zurück zum Zitat Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64CrossRefPubMed Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64CrossRefPubMed
26.
Zurück zum Zitat Ceckler TL, Wolff SD, Yip V, Simon SA, Balaban RS (1992) Dynamic and chemical factors affecting water proton relaxation by macromolecules. J Magn Reson 98(3):637–645 Ceckler TL, Wolff SD, Yip V, Simon SA, Balaban RS (1992) Dynamic and chemical factors affecting water proton relaxation by macromolecules. J Magn Reson 98(3):637–645
27.
Zurück zum Zitat Fralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS (1991) Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 18(1):214–223 Fralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS (1991) Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 18(1):214–223
28.
Zurück zum Zitat Chen JT, Collins DL, Atkins HL, Freedman MS, Arnold DL, Canadian MS/BMT Study Group (2008) Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63(2):254–262 Chen JT, Collins DL, Atkins HL, Freedman MS, Arnold DL, Canadian MS/BMT Study Group (2008) Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 63(2):254–262
29.
Zurück zum Zitat Sakata A, Fushimi Y, Okada T et al (2017) Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging 46(3):732–739 Sakata A, Fushimi Y, Okada T et al (2017) Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging 46(3):732–739
Metadaten
Titel
Amid proton transfer (APT) and magnetization transfer (MT) MRI contrasts provide complimentary assessment of brain tumors similarly to proton magnetic resonance spectroscopy imaging (MRSI)
verfasst von
Changliang Su
Lingyun Zhao
Shihui Li
Jingjing Jiang
Kejia Cai
Jingjing Shi
Yihao Yao
Qilin Ao
Guiling Zhang
Nanxi Shen
Shan Hu
Jiaxuan Zhang
Yuanyuan Qin
Wenzhen Zhu
Publikationsdatum
13.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 3/2019
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5615-8

Weitere Artikel der Ausgabe 3/2019

European Radiology 3/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.