Skip to main content
Erschienen in: European Radiology 8/2018

27.02.2018 | Neuro

Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography

verfasst von: Ji Eun Park, Ji Ye Lee, Ho Sung Kim, Joo-Young Oh, Seung Chai Jung, Sang Joon Kim, Jochen Keupp, Minyoung Oh, Jae Seung Kim

Erschienen in: European Radiology | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To compare the diagnostic performance of amide proton transfer (APT) imaging and 11-C methionine positron emission tomography (MET-PET) for in vivo molecular imaging of protein metabolism in post-treatment gliomas.

Materials and methods

This study included 43 patients (12 low and 31 high grade) with post-treatment gliomas who underwent both APT and MET-PET imaging within 3 weeks. APT-weighted voxel values and semi-quantitative tumour-to-normal ratios (TNR) were obtained from tumour portions. The voxel-wise relationships between TNR and APT were assessed. The diagnostic performance for recurrence of high-grade gliomas was calculated, using the area under the receiver operating characteristic curve (AUC) with maximum (TNRmax and APTmax) and 90% histogram values (TNR90 and APT90).

Results

A moderate positive correlation between TNR and APT was found in low-grade recurrences (r = 0.47, p < 0.001), but not in high-grade ones (r = −0.24, p < 0.001). For distinguishing recurrence in post-treatment high-grade gliomas, APTmax (AUC, 0.88) and APT90 (AUC, 0.78–0.83) had a similar to better diagnostic performance than TNRmax (AUC, 0.71, p = 0.08) or TNR90 (AUC, 0.53–0.59, p = 0.01–0.05).

Conclusions

In post-treatment high-grade gliomas, APT provides different regional information to MET-PET and provides higher diagnostic performance. This difference needs to be considered when using APT or MET-PET as a surrogate marker for tumour protein metabolism.

Key Points

• APT and TNR values in low-grade recurrence showed a moderate voxel-wise correlation.
• APT and TNR demonstrated regional differences in post-treatment high-grade gliomas.
• APT90 showed better diagnostic performance than TNR90 in high-grade recurrence.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Schober O, Duden C, Meyer GJ, Muller JA, Hundeshagen H (1987) Non selective transport of [11C-methyl]-L-and D-methionine into a malignant glioma. Eur J Nucl Med 13:103–105CrossRefPubMed Schober O, Duden C, Meyer GJ, Muller JA, Hundeshagen H (1987) Non selective transport of [11C-methyl]-L-and D-methionine into a malignant glioma. Eur J Nucl Med 13:103–105CrossRefPubMed
3.
Zurück zum Zitat Tripathi M, Sharma R, Varshney R et al (2012) Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 37:158–163CrossRefPubMed Tripathi M, Sharma R, Varshney R et al (2012) Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 37:158–163CrossRefPubMed
4.
Zurück zum Zitat Petrirena GJ, Goldman S, Delattre JY (2011) Advances in PET imaging of brain tumors: a referring physician's perspective. Current Opinion in Oncology 23:617–623CrossRefPubMed Petrirena GJ, Goldman S, Delattre JY (2011) Advances in PET imaging of brain tumors: a referring physician's perspective. Current Opinion in Oncology 23:617–623CrossRefPubMed
5.
Zurück zum Zitat Rheims S, Rubi S, Bouvard S et al (2014) Accuracy of distinguishing between dysembryoplastic neuroepithelial tumors and other epileptogenic brain neoplasms with [C-11] methionine PET. Neuro-Oncology 16:1417–1426CrossRefPubMedPubMedCentral Rheims S, Rubi S, Bouvard S et al (2014) Accuracy of distinguishing between dysembryoplastic neuroepithelial tumors and other epileptogenic brain neoplasms with [C-11] methionine PET. Neuro-Oncology 16:1417–1426CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52CrossRefPubMed Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52CrossRefPubMed
7.
Zurück zum Zitat Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549CrossRefPubMed Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549CrossRefPubMed
8.
Zurück zum Zitat Ullrich RT, Kracht L, Brunn A et al (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50:1962–1968CrossRefPubMed Ullrich RT, Kracht L, Brunn A et al (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50:1962–1968CrossRefPubMed
9.
Zurück zum Zitat Pirotte B, Goldman S, Van Bogaert P et al (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139 discussion 128-139CrossRefPubMed Pirotte B, Goldman S, Van Bogaert P et al (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139 discussion 128-139CrossRefPubMed
10.
Zurück zum Zitat Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592CrossRefPubMed Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592CrossRefPubMed
11.
12.
Zurück zum Zitat Kim J, Wu Y, Guo Y, Zheng H, Sun PZ (2015) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging 10:163–178CrossRefPubMedPubMedCentral Kim J, Wu Y, Guo Y, Zheng H, Sun PZ (2015) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging 10:163–178CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Yan K, Fu Z, Yang C et al (2015) Assessing amide proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol 17:479–487CrossRefPubMedPubMedCentral Yan K, Fu Z, Yang C et al (2015) Assessing amide proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol 17:479–487CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448CrossRefPubMed Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16:441–448CrossRefPubMed
15.
Zurück zum Zitat Park JE, Kim HS, Park KJ, Choi CG, Kim SJ (2015) Histogram analysis of amide proton transfer imaging to identify contrast-enhancing low-grade brain tumor that mimics high-grade tumor: increased accuracy of MR perfusion. Radiology 277:151–161CrossRefPubMed Park JE, Kim HS, Park KJ, Choi CG, Kim SJ (2015) Histogram analysis of amide proton transfer imaging to identify contrast-enhancing low-grade brain tumor that mimics high-grade tumor: increased accuracy of MR perfusion. Radiology 277:151–161CrossRefPubMed
16.
Zurück zum Zitat Togao O, Hiwatashi A, Yamashita K et al (2016) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol Togao O, Hiwatashi A, Yamashita K et al (2016) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol
17.
Zurück zum Zitat Park JE, Kim HS, Park KJ, Kim SJ, Kim JH, Smith SA (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology 278:514–523CrossRefPubMed Park JE, Kim HS, Park KJ, Kim SJ, Kim JH, Smith SA (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology 278:514–523CrossRefPubMed
18.
Zurück zum Zitat Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol
19.
Zurück zum Zitat Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11:563–570CrossRefPubMed Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11:563–570CrossRefPubMed
20.
Zurück zum Zitat Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 38:342–347 discussion 347-348CrossRef Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 38:342–347 discussion 347-348CrossRef
21.
Zurück zum Zitat Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202CrossRefPubMed Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202CrossRefPubMed
22.
Zurück zum Zitat Roelcke U, Radu E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL (1996) Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 27:163–171CrossRefPubMed Roelcke U, Radu E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL (1996) Association of rubidium and C-methionine uptake in brain tumors measured by positron emission tomography. J Neurooncol 27:163–171CrossRefPubMed
23.
Zurück zum Zitat Heo HY, Lee DH, Zhang Y et al (2017) Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 77:1853–1865CrossRefPubMed Heo HY, Lee DH, Zhang Y et al (2017) Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 77:1853–1865CrossRefPubMed
24.
Zurück zum Zitat Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699CrossRefPubMed Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699CrossRefPubMed
25.
26.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRefPubMed Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRefPubMed
27.
Zurück zum Zitat van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefPubMed van den Bent MJ, Wefel JS, Schiff D et al (2011) Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol 12:583–593CrossRefPubMed
28.
Zurück zum Zitat Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972CrossRefPubMed
29.
Zurück zum Zitat Keupp J, Baltes C, Harvey P, J. van den Brink (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain at 3T. In: Proc 19th Annual Meeting ISMRM Montreal Keupp J, Baltes C, Harvey P, J. van den Brink (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain at 3T. In: Proc 19th Annual Meeting ISMRM Montreal
30.
Zurück zum Zitat Xiang QS (2006) Two-point water-fat imaging with partially-opposed-phase (POP) acquisition: an asymmetric Dixon method. Magn Reson Med 56:572–584CrossRefPubMed Xiang QS (2006) Two-point water-fat imaging with partially-opposed-phase (POP) acquisition: an asymmetric Dixon method. Magn Reson Med 56:572–584CrossRefPubMed
31.
Zurück zum Zitat Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65:96–107CrossRefPubMed Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65:96–107CrossRefPubMed
32.
Zurück zum Zitat Tee YK, Donahue MJ, Harston GW, Payne SJ, Chappell MA (2014) Quantification of amide proton transfer effect pre- and post-gadolinium contrast agent administration. J Magn Reson Imaging 40:832–838CrossRefPubMed Tee YK, Donahue MJ, Harston GW, Payne SJ, Chappell MA (2014) Quantification of amide proton transfer effect pre- and post-gadolinium contrast agent administration. J Magn Reson Imaging 40:832–838CrossRefPubMed
33.
Zurück zum Zitat Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ (2013) Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 269:561–568CrossRefPubMed Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ (2013) Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 269:561–568CrossRefPubMed
34.
Zurück zum Zitat Jeong HK, Han K, Zhou J et al (2017) Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI. Eur Radiol 27:1577–1584CrossRefPubMed Jeong HK, Han K, Zhou J et al (2017) Characterizing amide proton transfer imaging in haemorrhage brain lesions using 3T MRI. Eur Radiol 27:1577–1584CrossRefPubMed
35.
Zurück zum Zitat Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437PubMed Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437PubMed
36.
Zurück zum Zitat Puttick S, Bell C, Dowson N, Rose S, Fay M (2015) PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 20:306–317CrossRefPubMed Puttick S, Bell C, Dowson N, Rose S, Fay M (2015) PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 20:306–317CrossRefPubMed
37.
Zurück zum Zitat Takenaka S, Asano Y, Shinoda J et al (2014) Comparison of 11C-Methionine, 11C-Choline, and 18F-Fluorodeoxyglucose-PET for Distinguishing Glioma Recurrence from Radiation Necrosis. Neurologia medico-chirurgica 54:280–289CrossRefPubMed Takenaka S, Asano Y, Shinoda J et al (2014) Comparison of 11C-Methionine, 11C-Choline, and 18F-Fluorodeoxyglucose-PET for Distinguishing Glioma Recurrence from Radiation Necrosis. Neurologia medico-chirurgica 54:280–289CrossRefPubMed
38.
Zurück zum Zitat Togao O, Hiwatashi A, Keupp J et al (2015) Scan-rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumors. J Magn Reson Imaging 42:1346–1353CrossRefPubMed Togao O, Hiwatashi A, Keupp J et al (2015) Scan-rescan reproducibility of parallel transmission based amide proton transfer imaging of brain tumors. J Magn Reson Imaging 42:1346–1353CrossRefPubMed
39.
Zurück zum Zitat Scheidegger R, Wong ET, Alsop DC (2014) Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99:256–268CrossRefPubMedPubMedCentral Scheidegger R, Wong ET, Alsop DC (2014) Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99:256–268CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Heo HY, Zhang Y, Lee DH, Hong X, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla. Magn Reson Med 75:137–149CrossRefPubMed Heo HY, Zhang Y, Lee DH, Hong X, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization transfer reference (EMR) signals: Application to a rat glioma model at 4.7 Tesla. Magn Reson Med 75:137–149CrossRefPubMed
41.
Zurück zum Zitat Li H, Li K, Zhang XY et al (2015) R1 correction in amide proton transfer imaging: indication of the influence of transcytolemmal water exchange on CEST measurements. NMR Biomed 28:1655–1662CrossRefPubMedPubMedCentral Li H, Li K, Zhang XY et al (2015) R1 correction in amide proton transfer imaging: indication of the influence of transcytolemmal water exchange on CEST measurements. NMR Biomed 28:1655–1662CrossRefPubMedPubMedCentral
Metadaten
Titel
Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography
verfasst von
Ji Eun Park
Ji Ye Lee
Ho Sung Kim
Joo-Young Oh
Seung Chai Jung
Sang Joon Kim
Jochen Keupp
Minyoung Oh
Jae Seung Kim
Publikationsdatum
27.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2018
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5341-2

Weitere Artikel der Ausgabe 8/2018

European Radiology 8/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.