Skip to main content
Erschienen in: Archives of Virology 6/2019

08.04.2019 | Brief Report

Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish

verfasst von: Wen-Xing Hu, Eun-Young Seo, In-Sook Cho, Jung-Kyu Kim, Hye-Kyoung Ju, Ik-Hyun Kim, Go-Woon Choi, Boram Kim, Chun-Hee Ahn, Leslie L. Domier, Sang-Keun Oh, John Hammond, Hyoun-Sub Lim

Erschienen in: Archives of Virology | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Excerpt

Radish (Raphanus sativus L.) is an important vegetable crop worldwide, occupying the second largest area of all vegetables in China [1]. Farmers tend to select the best cultivar, and therefore, there are only a few cultivars in production [2]. However, continuous cultivation and ecological changes have led to increasing severity of radish viral diseases [3]. Turnip mosaic virus (TuMV), cucumber mosaic virus (CMV), and radish mosaic virus (RaMV) are the main viruses of radish plants in China [4]. …
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang LZ, He QS (2005) Chinese radish. Science and Technology Literature Press, Beijing Wang LZ, He QS (2005) Chinese radish. Science and Technology Literature Press, Beijing
2.
Zurück zum Zitat Wang LZ, Liu WD, Li HJ (1988) Study on anti-turnip mosaic virus variety resources of summer Radish. Chin J Nanjing Agric Univ 11:32–38 Wang LZ, Liu WD, Li HJ (1988) Study on anti-turnip mosaic virus variety resources of summer Radish. Chin J Nanjing Agric Univ 11:32–38
3.
Zurück zum Zitat Zhao JP, Zhou CM, Chen JS et al (2004) Research progress on characteristics of turnip mosaic virus (TuMV). Chin J Microbiol 31:100–104 Zhao JP, Zhou CM, Chen JS et al (2004) Research progress on characteristics of turnip mosaic virus (TuMV). Chin J Microbiol 31:100–104
4.
Zurück zum Zitat Han S, Wang L, Zuqin AP (1988) Investigation and pathogenic identification of radish virus disease in Nanjing suburbs. J Nanjing Agric Univ 11(3):39–43 Han S, Wang L, Zuqin AP (1988) Investigation and pathogenic identification of radish virus disease in Nanjing suburbs. J Nanjing Agric Univ 11(3):39–43
5.
Zurück zum Zitat Nguyen HD, Tran HTN, Ohshima K (2013) Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional, and local influences. Virus Res 171:138–149CrossRefPubMed Nguyen HD, Tran HTN, Ohshima K (2013) Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional, and local influences. Virus Res 171:138–149CrossRefPubMed
6.
Zurück zum Zitat Nyalugwe EP, Jones RAC, Barbetti MJ et al (2015) Biological and molecular variation amongst Australian turnip mosaic virus isolates. Plant Pathol 64:1215–1223CrossRef Nyalugwe EP, Jones RAC, Barbetti MJ et al (2015) Biological and molecular variation amongst Australian turnip mosaic virus isolates. Plant Pathol 64:1215–1223CrossRef
7.
Zurück zum Zitat Zheng GH, Peng DW, Tong QX et al (2017) Occurrence of turnip mosaic virus in Phalaenopsis sp. in China. J Plant Pathol 99:703–706 Zheng GH, Peng DW, Tong QX et al (2017) Occurrence of turnip mosaic virus in Phalaenopsis sp. in China. J Plant Pathol 99:703–706
8.
Zurück zum Zitat Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300CrossRefPubMed Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300CrossRefPubMed
9.
Zurück zum Zitat Tomimura K, Gibbs AJ, Jenner CE et al (2010) The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in East Asia. Mol Ecol 12:2099–2111CrossRef Tomimura K, Gibbs AJ, Jenner CE et al (2010) The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in East Asia. Mol Ecol 12:2099–2111CrossRef
10.
Zurück zum Zitat Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681CrossRef Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681CrossRef
11.
Zurück zum Zitat Cai L, Xu ZY, Chen KR et al (2005) Recent advances in Turnip mosaic virus. Chin J Oil Crop Sci 27:104–110 Cai L, Xu ZY, Chen KR et al (2005) Recent advances in Turnip mosaic virus. Chin J Oil Crop Sci 27:104–110
12.
Zurück zum Zitat Liu GX, Dai C, Xu YY et al (2016) Research status of turnip anti-turnip Mosaic virus. Chin J Yangzte Veg 8:31–34 Liu GX, Dai C, Xu YY et al (2016) Research status of turnip anti-turnip Mosaic virus. Chin J Yangzte Veg 8:31–34
13.
Zurück zum Zitat Shukla DD, Ward CW, Brunt AA (1994) The Potyviridae. CAB International, Wallingford Shukla DD, Ward CW, Brunt AA (1994) The Potyviridae. CAB International, Wallingford
14.
Zurück zum Zitat Chung BY, Miller WA, Atkins JF et al (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902CrossRefPubMed Chung BY, Miller WA, Atkins JF et al (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902CrossRefPubMed
15.
Zurück zum Zitat Ohshima K, Yamaguchi Y, Hirota R et al (2002) Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521CrossRefPubMed Ohshima K, Yamaguchi Y, Hirota R et al (2002) Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521CrossRefPubMed
16.
Zurück zum Zitat Tomimura K, Spak J, Katis N et al (2004) Comparisons of the genetic structure of populations of turnip mosaic virus in west and east Eurasia. Virology 330(2):408–423CrossRefPubMed Tomimura K, Spak J, Katis N et al (2004) Comparisons of the genetic structure of populations of turnip mosaic virus in west and east Eurasia. Virology 330(2):408–423CrossRefPubMed
17.
Zurück zum Zitat Tomitaka Y, Ohshima K (2010) A phylogeographical study of the turnip mosaic virus population in east Asia reveals an ‘emergent’ lineage in Japan. Mol Ecol 15:4437–4457CrossRef Tomitaka Y, Ohshima K (2010) A phylogeographical study of the turnip mosaic virus population in east Asia reveals an ‘emergent’ lineage in Japan. Mol Ecol 15:4437–4457CrossRef
19.
Zurück zum Zitat Tian YP, Zhu XP, Liu JL et al (2007) Molecular characterization of the 3’-terminal region of turnip mosaic virus isolates from eastern China. J Phytopathol 155:333–341CrossRef Tian YP, Zhu XP, Liu JL et al (2007) Molecular characterization of the 3’-terminal region of turnip mosaic virus isolates from eastern China. J Phytopathol 155:333–341CrossRef
20.
Zurück zum Zitat Chen J, Chen JP, Adams MJ (2002) Variation between turnip mosaic virus isolates in Zhejiang province, China and evidence for recombination. J Phytopathol 150:142–145CrossRef Chen J, Chen JP, Adams MJ (2002) Variation between turnip mosaic virus isolates in Zhejiang province, China and evidence for recombination. J Phytopathol 150:142–145CrossRef
21.
Zurück zum Zitat Hahm YI (1995) Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kang-won province. Plant Dis Agric 1:45–46 Hahm YI (1995) Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kang-won province. Plant Dis Agric 1:45–46
22.
Zurück zum Zitat Hahm YI, Kwon M, Kim JS et al (1998) Surveys on disease occurrence in major horticultural crops in Kangwon alpine areas. Korean J Plant Pathol 14:668–675 Hahm YI, Kwon M, Kim JS et al (1998) Surveys on disease occurrence in major horticultural crops in Kangwon alpine areas. Korean J Plant Pathol 14:668–675
23.
Zurück zum Zitat Chung JS, Han JY, Kim JK et al (2015) Survey of viruses present in radish fields in 2014. Res Plant Dis 21:235–242CrossRef Chung JS, Han JY, Kim JK et al (2015) Survey of viruses present in radish fields in 2014. Res Plant Dis 21:235–242CrossRef
24.
Zurück zum Zitat Han JY, Chung J, Kim J et al (2016) Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus. Virus Genes 52:592–596CrossRefPubMed Han JY, Chung J, Kim J et al (2016) Comparison of helper component-protease RNA silencing suppression activity, subcellular localization, and aggregation of three Korean isolates of Turnip mosaic virus. Virus Genes 52:592–596CrossRefPubMed
26.
Zurück zum Zitat Shi ML, Li HY, Schubert J et al (2007) Sequence analysis of CP and HC-Pro genes of Turnip mosaic virus isolates from China. Acta Virol 52:59–62 Shi ML, Li HY, Schubert J et al (2007) Sequence analysis of CP and HC-Pro genes of Turnip mosaic virus isolates from China. Acta Virol 52:59–62
27.
Zurück zum Zitat Wang HY, Liu JL, Gao R et al (2009) Complete genomic sequence analysis of Turnip mosaic virus basal-BR isolates from China. Virus Genes 38:421–428CrossRefPubMed Wang HY, Liu JL, Gao R et al (2009) Complete genomic sequence analysis of Turnip mosaic virus basal-BR isolates from China. Virus Genes 38:421–428CrossRefPubMed
28.
Zurück zum Zitat Li MJ, Kim JK, Seo EY et al (2014) Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Arch Virol 159:1373–1383CrossRefPubMed Li MJ, Kim JK, Seo EY et al (2014) Sequence variability in the HC-Pro coding regions of Korean soybean mosaic virus isolates is associated with differences in RNA silencing suppression. Arch Virol 159:1373–1383CrossRefPubMed
29.
Zurück zum Zitat Zubareva IA, Vinogradova SV, Gribova TN et al (2013) Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. Doklady Biochem Biophys Mol Biol 450:119–122CrossRef Zubareva IA, Vinogradova SV, Gribova TN et al (2013) Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. Doklady Biochem Biophys Mol Biol 450:119–122CrossRef
30.
Zurück zum Zitat Zhu F, Sun Y, Wang Y et al (2016) Molecular characterization of the complete genome of three basal-BR isolates of turnip mosaic virus infecting Raphanus sativus in China. Int J Mol Sci 17:E888CrossRefPubMed Zhu F, Sun Y, Wang Y et al (2016) Molecular characterization of the complete genome of three basal-BR isolates of turnip mosaic virus infecting Raphanus sativus in China. Int J Mol Sci 17:E888CrossRefPubMed
31.
Zurück zum Zitat Tan Z, Wada Y, Chen J et al (2004) Inter- and intralineage recombinants are common in natural populations of turnip mosaic virus. J Gen Virol 85:2683–2696CrossRefPubMed Tan Z, Wada Y, Chen J et al (2004) Inter- and intralineage recombinants are common in natural populations of turnip mosaic virus. J Gen Virol 85:2683–2696CrossRefPubMed
32.
Zurück zum Zitat Park CH, Ju HK, Han JY et al (2017) Complete nucleotide sequences and construction of full-length infectious cDNA clones of cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters. Virus Genes 53:1–14CrossRef Park CH, Ju HK, Han JY et al (2017) Complete nucleotide sequences and construction of full-length infectious cDNA clones of cucumber green mottle mosaic virus (CGMMV) in a versatile newly developed binary vector including both 35S and T7 promoters. Virus Genes 53:1–14CrossRef
33.
Zurück zum Zitat Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473CrossRefPubMed Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473CrossRefPubMed
34.
Zurück zum Zitat Sáenz P, Cervera MT, Dallot S et al (2000) Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the C-terminal region of protein P3 + 6K1. J Gen Virol 81:557–566CrossRefPubMed Sáenz P, Cervera MT, Dallot S et al (2000) Identification of a pathogenicity determinant of plum pox virus in the sequence encoding the C-terminal region of protein P3 + 6K1. J Gen Virol 81:557–566CrossRefPubMed
35.
Zurück zum Zitat Sáenz P, Quiot L, Quiot JB et al (2001) Pathogenicity determinants in the complex virus population of a plum pox virus isolate. Mol Plant Microbe Interact 14(3):278–287CrossRefPubMed Sáenz P, Quiot L, Quiot JB et al (2001) Pathogenicity determinants in the complex virus population of a plum pox virus isolate. Mol Plant Microbe Interact 14(3):278–287CrossRefPubMed
36.
Zurück zum Zitat Redondo E, Krause-Sakate R, Yang SJ et al (2001) Lettuce mosaic virus pathogenicity determinants in susceptible and tolerant lettuce cultivars map to different regions of the viral genome. Mol Plant Microbe Interact 14:804–810CrossRefPubMed Redondo E, Krause-Sakate R, Yang SJ et al (2001) Lettuce mosaic virus pathogenicity determinants in susceptible and tolerant lettuce cultivars map to different regions of the viral genome. Mol Plant Microbe Interact 14:804–810CrossRefPubMed
37.
Zurück zum Zitat Jenner CE, Tomimura K, Ohshima K et al (2002) Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59CrossRefPubMed Jenner CE, Tomimura K, Ohshima K et al (2002) Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59CrossRefPubMed
38.
Zurück zum Zitat Jenner CE, Wang X, Tomimura K et al (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784CrossRefPubMed Jenner CE, Wang X, Tomimura K et al (2003) The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784CrossRefPubMed
39.
Zurück zum Zitat Suehiro N, Natsuaki T, Watanabe T et al (2004) An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85:2087–2098CrossRefPubMed Suehiro N, Natsuaki T, Watanabe T et al (2004) An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85:2087–2098CrossRefPubMed
40.
Zurück zum Zitat Liu J, Yu X, Tian Y et al (2006) Molecular characterization and coat protein gene expression of a Turnip mosaic virus isolate from radish in Weifang. Acta Hortic Sin 33:84–88 Liu J, Yu X, Tian Y et al (2006) Molecular characterization and coat protein gene expression of a Turnip mosaic virus isolate from radish in Weifang. Acta Hortic Sin 33:84–88
Metadaten
Titel
Amino acid differences in the N-terminal half of the polyprotein of Chinese turnip mosaic virus isolates affect symptom expression in Nicotiana benthamiana and radish
verfasst von
Wen-Xing Hu
Eun-Young Seo
In-Sook Cho
Jung-Kyu Kim
Hye-Kyoung Ju
Ik-Hyun Kim
Go-Woon Choi
Boram Kim
Chun-Hee Ahn
Leslie L. Domier
Sang-Keun Oh
John Hammond
Hyoun-Sub Lim
Publikationsdatum
08.04.2019
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 6/2019
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-019-04242-9

Weitere Artikel der Ausgabe 6/2019

Archives of Virology 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.