Skip to main content
Erschienen in: Journal of Digital Imaging 1/2019

07.08.2018

An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images

verfasst von: Herng-Hua Chang, Yu-Ju Lin, Audrey Haihong Zhuang

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Bilateral filters have been extensively utilized in a number of image denoising applications such as segmentation, registration, and tissue classification. However, it requires burdensome adjustments of the filter parameters to achieve the best performance for each individual image. To address this problem, this paper proposes a computer-aided parameter decision system based on image texture features associated with neural networks. In our approach, parallel computing with the GPU architecture is first developed to accelerate the computation of the conventional bilateral filter. Subsequently, a back propagation network (BPN) scheme using significant image texture features as the input is established to estimate the GPU-based bilateral filter parameters and its denoising process. The k-fold cross validation method is exploited to evaluate the performance of the proposed automatic restoration framework. A wide variety of T1-weighted brain MR images were employed to train and evaluate this parameter-free decision system with GPU-based bilateral filtering, which resulted in a speed-up factor of 208 comparing to the CPU-based computation. The proposed filter parameter prediction system achieved a mean absolute percentage error (MAPE) of 6% and was classified as “high accuracy”. Our automatic denoising framework dramatically removed noise in numerous brain MR images and outperformed several state-of-the-art methods based on the peak signal-to-noise ratio (PSNR). The usage of image texture features associated with the BPN to estimate the GPU-based bilateral filter parameters and to automate the denoising process is feasible and validated. It is suggested that this automatic restoration system is advantageous to various brain MR image-processing applications.
Literatur
1.
Zurück zum Zitat Younis A, Ibrahim M, Kabuka M, John N: An artificial immune-activated neural network applied to brain 3D MRI segmentation. J Digit Imaging 21:69–88, 2008CrossRef Younis A, Ibrahim M, Kabuka M, John N: An artificial immune-activated neural network applied to brain 3D MRI segmentation. J Digit Imaging 21:69–88, 2008CrossRef
2.
Zurück zum Zitat Jang U, Nam Y, Kim D-H, Hwang D: Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising. Neuroimage 70:308–316, 2013CrossRefPubMed Jang U, Nam Y, Kim D-H, Hwang D: Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising. Neuroimage 70:308–316, 2013CrossRefPubMed
4.
Zurück zum Zitat Aja-Fernández S, Tristán-Vega A, Alberola-López C: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. Magnetic Resonance Imaging 27:1397–1409, 2009CrossRefPubMed Aja-Fernández S, Tristán-Vega A, Alberola-López C: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. Magnetic Resonance Imaging 27:1397–1409, 2009CrossRefPubMed
5.
Zurück zum Zitat Aja-Fernandez S, Alberola-Lopez C, Westin CF: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. Image processing. IEEE Transactions on 17:1383–1398, 2008 Aja-Fernandez S, Alberola-Lopez C, Westin CF: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. Image processing. IEEE Transactions on 17:1383–1398, 2008
6.
Zurück zum Zitat Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M: MRI denoising using non-local means. Med Image Anal 12:514–523, 2008CrossRefPubMed Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M: MRI denoising using non-local means. Med Image Anal 12:514–523, 2008CrossRefPubMed
7.
Zurück zum Zitat He L, Greenshields IR: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imag 28:165–172, 2009CrossRef He L, Greenshields IR: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans Med Imag 28:165–172, 2009CrossRef
8.
Zurück zum Zitat Liu H, Yang C, Pan N, Song E, Green R: Denoising 3D MR images by the enhanced non-local means filter for Rician noise. Magn Reson Imaging 28:1485–1496, 2010CrossRefPubMed Liu H, Yang C, Pan N, Song E, Green R: Denoising 3D MR images by the enhanced non-local means filter for Rician noise. Magn Reson Imaging 28:1485–1496, 2010CrossRefPubMed
9.
Zurück zum Zitat Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M: Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203, 2010CrossRefPubMed Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M: Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203, 2010CrossRefPubMed
10.
Zurück zum Zitat Pizurica A, Philips W, Lemahieu I, Acheroy M: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging 22:323–331, 2003CrossRefPubMed Pizurica A, Philips W, Lemahieu I, Acheroy M: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging 22:323–331, 2003CrossRefPubMed
11.
Zurück zum Zitat Kim J, Leira EC, Callison RC, Ludwig B, Moritani T, Magnotta VA, Madsen MT: Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke. Comput Methods Programs Biomed 98:204–213, 2010CrossRefPubMed Kim J, Leira EC, Callison RC, Ludwig B, Moritani T, Magnotta VA, Madsen MT: Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke. Comput Methods Programs Biomed 98:204–213, 2010CrossRefPubMed
12.
Zurück zum Zitat Malinsky M, Peter R, Hodneland E, Lundervold AJ, Lundervold A, Jan J: Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation. J Digit Imaging 26:774–785, 2013CrossRefPubMedPubMedCentral Malinsky M, Peter R, Hodneland E, Lundervold AJ, Lundervold A, Jan J: Registration of FA and T1-weighted MRI data of healthy human brain based on template matching and normalized cross-correlation. J Digit Imaging 26:774–785, 2013CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12:629–639, 1990CrossRef Perona P, Malik J: Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12:629–639, 1990CrossRef
14.
Zurück zum Zitat Ferrari R: Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Med Biol Eng Comput 51:71–88, 2013CrossRefPubMed Ferrari R: Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Med Biol Eng Comput 51:71–88, 2013CrossRefPubMed
15.
Zurück zum Zitat Tomasi C, Manduchi R: Bilateral filtering for gray and color images. Proc. Computer Vision, 1998 Sixth International Conference on: City Tomasi C, Manduchi R: Bilateral filtering for gray and color images. Proc. Computer Vision, 1998 Sixth International Conference on: City
16.
Zurück zum Zitat Anand CS, Sahambi JS: MRI denoising using bilateral filter in redundant wavelet domain. IEEE Proc TENCON:1–6, 2008 Anand CS, Sahambi JS: MRI denoising using bilateral filter in redundant wavelet domain. IEEE Proc TENCON:1–6, 2008
17.
Zurück zum Zitat Chang H-H, Chu W-C: Restoration algorithm for image noise removal using double bilateral filtering. Journal of Electronic Imaging 21:023028–023021, 2012CrossRef Chang H-H, Chu W-C: Restoration algorithm for image noise removal using double bilateral filtering. Journal of Electronic Imaging 21:023028–023021, 2012CrossRef
18.
Zurück zum Zitat Dong G, Acton ST: On the convergence of bilateral filter for edge-preserving image smoothing. Signal processing letters. IEEE 14:617–620, 2007 Dong G, Acton ST: On the convergence of bilateral filter for edge-preserving image smoothing. Signal processing letters. IEEE 14:617–620, 2007
19.
Zurück zum Zitat Zhang B, Allebach JP: Adaptive bilateral filter for sharpness enhancement and noise removal. Image processing. IEEE Transactions on 17:664–678, 2008 Zhang B, Allebach JP: Adaptive bilateral filter for sharpness enhancement and noise removal. Image processing. IEEE Transactions on 17:664–678, 2008
20.
Zurück zum Zitat Farzana E, Tanzid M, Mohsin KM, Bhuiyan MIH: Bilateral filtering with adaptation to phase coherence and noise. SIViP 7:367–376, 2013CrossRef Farzana E, Tanzid M, Mohsin KM, Bhuiyan MIH: Bilateral filtering with adaptation to phase coherence and noise. SIViP 7:367–376, 2013CrossRef
21.
Zurück zum Zitat Walker SA, Miller D, Tanabe J: Bilateral spatial filtering: refining methods for localizing brain activation in the presence of parenchymal abnormalities. Neuroimage 33:564–569, 2006CrossRefPubMed Walker SA, Miller D, Tanabe J: Bilateral spatial filtering: refining methods for localizing brain activation in the presence of parenchymal abnormalities. Neuroimage 33:564–569, 2006CrossRefPubMed
22.
Zurück zum Zitat Rydell J, Knutsson H, Borga M: Bilateral filtering of fMRI data. Selected topics in signal processing. IEEE Journal of 2:891–896, 2008 Rydell J, Knutsson H, Borga M: Bilateral filtering of fMRI data. Selected topics in signal processing. IEEE Journal of 2:891–896, 2008
23.
Zurück zum Zitat Hamarneh G, Hradsky J: Bilateral filtering of diffusion tensor magnetic resonance images. Image processing. IEEE Transactions on 16:2463–2475, 2007 Hamarneh G, Hradsky J: Bilateral filtering of diffusion tensor magnetic resonance images. Image processing. IEEE Transactions on 16:2463–2475, 2007
24.
Zurück zum Zitat McPhee KC, Denk C, Al-Rekabi Z, Rauscher A: Bilateral filtering of magnetic resonance phase images. Magn Reson Imaging 29:1023–1029, 2011CrossRefPubMed McPhee KC, Denk C, Al-Rekabi Z, Rauscher A: Bilateral filtering of magnetic resonance phase images. Magn Reson Imaging 29:1023–1029, 2011CrossRefPubMed
25.
Zurück zum Zitat Jaramillo R, Lentini M, Paluszny M: Improving the performance of the Prony method using a wavelet domain filter for MRI Denoising. Comput Math Methods Med 2014:10, 2014CrossRef Jaramillo R, Lentini M, Paluszny M: Improving the performance of the Prony method using a wavelet domain filter for MRI Denoising. Comput Math Methods Med 2014:10, 2014CrossRef
26.
Zurück zum Zitat Wells JR, Dobbins JT: Frequency response and distortion properties of nonlinear image processing algorithms and the importance of imaging context. Med Phys 40:091906, 2013CrossRefPubMed Wells JR, Dobbins JT: Frequency response and distortion properties of nonlinear image processing algorithms and the importance of imaging context. Med Phys 40:091906, 2013CrossRefPubMed
27.
Zurück zum Zitat Kala R, Deepa P: Removal of rician noise in MRI images using bilateral filter by fuzzy trapezoidal membership function. Proc. 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS): City, 6–7 Jan. 2017 Year Kala R, Deepa P: Removal of rician noise in MRI images using bilateral filter by fuzzy trapezoidal membership function. Proc. 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS): City, 6–7 Jan. 2017 Year
28.
Zurück zum Zitat Szczypiński PM, Strzelecki M, Materka A, Klepaczko A: MaZda—a software package for image texture analysis. Comput Methods Programs Biomed 94:66–76, 2009CrossRefPubMed Szczypiński PM, Strzelecki M, Materka A, Klepaczko A: MaZda—a software package for image texture analysis. Comput Methods Programs Biomed 94:66–76, 2009CrossRefPubMed
29.
Zurück zum Zitat López-Rubio E, Florentín-Núñez MN: Kernel regression based feature extraction for 3D MR image denoising. Med Image Anal 15:498–513, 2011CrossRefPubMed López-Rubio E, Florentín-Núñez MN: Kernel regression based feature extraction for 3D MR image denoising. Med Image Anal 15:498–513, 2011CrossRefPubMed
30.
Zurück zum Zitat Yang X, Fei B: Multiscale segmentation of the skull in MR images for MRI-based attenuation correction of combined MR/PET. J Am Med Inform Assoc 20:1037–1045, 2013CrossRefPubMedPubMedCentral Yang X, Fei B: Multiscale segmentation of the skull in MR images for MRI-based attenuation correction of combined MR/PET. J Am Med Inform Assoc 20:1037–1045, 2013CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Haykin SS: Neural Networks And Learning Machines: Pearson Education Upper Saddle River, 2009 Haykin SS: Neural Networks And Learning Machines: Pearson Education Upper Saddle River, 2009
32.
Zurück zum Zitat Virmani J, Kumar V, Kalra N, Khandelwal N: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J Digit Imaging 27:520–537, 2014CrossRefPubMedPubMedCentral Virmani J, Kumar V, Kalra N, Khandelwal N: Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J Digit Imaging 27:520–537, 2014CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Wang J, Kato F, Yamashita H, Baba M, Cui Y, Li R, Oyama-Manabe N, Shirato H: Automatic estimation of volumetric breast density using artificial neural network-based calibration of full-field digital mammography: feasibility on Japanese women with and without breast cancer. J Digit Imaging 30:215–227, 2017CrossRefPubMed Wang J, Kato F, Yamashita H, Baba M, Cui Y, Li R, Oyama-Manabe N, Shirato H: Automatic estimation of volumetric breast density using artificial neural network-based calibration of full-field digital mammography: feasibility on Japanese women with and without breast cancer. J Digit Imaging 30:215–227, 2017CrossRefPubMed
34.
Zurück zum Zitat Lin Y-J, Chang H-H: Investigation of significant attributes based on image feature and texture analysis for automatic noise reduction in MRI. The 15th international conference on biomedical engineering (ICBME 2013). IFMBE Proc 43:589–592, 2013CrossRef Lin Y-J, Chang H-H: Investigation of significant attributes based on image feature and texture analysis for automatic noise reduction in MRI. The 15th international conference on biomedical engineering (ICBME 2013). IFMBE Proc 43:589–592, 2013CrossRef
36.
Zurück zum Zitat Park IK, Singhal N, Lee MH, Cho S, Kim C: Design and performance evaluation of image processing algorithms on GPUs. IEEE Transactions on Parallel and Distributed Systems 22:91–104, 2011CrossRef Park IK, Singhal N, Lee MH, Cho S, Kim C: Design and performance evaluation of image processing algorithms on GPUs. IEEE Transactions on Parallel and Distributed Systems 22:91–104, 2011CrossRef
37.
Zurück zum Zitat Gonzalez RC, Woods RE: Digital Image Processing: Pearson, 2010 Gonzalez RC, Woods RE: Digital Image Processing: Pearson, 2010
38.
Zurück zum Zitat Mallat SG: A theory for multiresolution signal decomposition: the wavelet representation. Pattern analysis and machine intelligence. IEEE Transactions on 11:674–693, 1989 Mallat SG: A theory for multiresolution signal decomposition: the wavelet representation. Pattern analysis and machine intelligence. IEEE Transactions on 11:674–693, 1989
39.
Zurück zum Zitat Chang T, Kuo C-C: Texture analysis and classification with tree-structured wavelet transform. Image processing. IEEE Transactions on 2:429–441, 1993 Chang T, Kuo C-C: Texture analysis and classification with tree-structured wavelet transform. Image processing. IEEE Transactions on 2:429–441, 1993
40.
Zurück zum Zitat Haar A: Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 69:331–371, 1910CrossRef Haar A: Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 69:331–371, 1910CrossRef
41.
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein IH: Textural features for image classification. Systems, man and cybernetics, IEEE Transactions on SMC. 3:610–621, 1973 Haralick RM, Shanmugam K, Dinstein IH: Textural features for image classification. Systems, man and cybernetics, IEEE Transactions on SMC. 3:610–621, 1973
42.
Zurück zum Zitat Antel SB, Collins DL, Bernasconi N, Andermann F, Shinghal R, Kearney RE, Arnold DL, Bernasconi A: Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. NeuroImage 19:1748–1759, 2003CrossRefPubMed Antel SB, Collins DL, Bernasconi N, Andermann F, Shinghal R, Kearney RE, Arnold DL, Bernasconi A: Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. NeuroImage 19:1748–1759, 2003CrossRefPubMed
43.
Zurück zum Zitat Howarth P, Ruger S: Robust texture features for still-image retrieval. Vision, image and signal processing. IEE Proceedings 152:868–874, 2005 Howarth P, Ruger S: Robust texture features for still-image retrieval. Vision, image and signal processing. IEE Proceedings 152:868–874, 2005
44.
Zurück zum Zitat Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magnetic Resonance in Medicine 58:562–571, 2007CrossRefPubMed Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magnetic Resonance in Medicine 58:562–571, 2007CrossRefPubMed
45.
Zurück zum Zitat Wei S, Yanling H, Zhizhong L, Peng W: The research of satellite cloud image recognition base on variational method and texture feature analysis. Proc. Industrial Electronics and Applications, 2007 ICIEA 2007 2nd IEEE Conference on: City, 23–25 May 2007 Year Wei S, Yanling H, Zhizhong L, Peng W: The research of satellite cloud image recognition base on variational method and texture feature analysis. Proc. Industrial Electronics and Applications, 2007 ICIEA 2007 2nd IEEE Conference on: City, 23–25 May 2007 Year
46.
Zurück zum Zitat Fisher RA, Genetiker S, Genetician S, Britain G, Généticien S: Statistical Methods for Research Workers: Oliver and Boyd Edinburgh, 1970 Fisher RA, Genetiker S, Genetician S, Britain G, Généticien S: Statistical Methods for Research Workers: Oliver and Boyd Edinburgh, 1970
47.
Zurück zum Zitat Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1984 Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1984
49.
Zurück zum Zitat Nickolls J, Buck I, Garland M, Skadron K: Scalable parallel programming with CUDA. Queue 6:40–53, 2008CrossRef Nickolls J, Buck I, Garland M, Skadron K: Scalable parallel programming with CUDA. Queue 6:40–53, 2008CrossRef
50.
Zurück zum Zitat Hecht-Nielsen R: Theory of the backpropagation neural network. Proc. Neural Networks, 1989 IJCNN, International Joint Conference on: City, 0–0 1989 Year Hecht-Nielsen R: Theory of the backpropagation neural network. Proc. Neural Networks, 1989 IJCNN, International Joint Conference on: City, 0–0 1989 Year
51.
Zurück zum Zitat Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. Nature 323:533–536, 1986CrossRef Rumelhart DE, Hinton GE, Williams RJ: Learning representations by back-propagating errors. Nature 323:533–536, 1986CrossRef
52.
Zurück zum Zitat McClelland JL, Rumelhart DE, Group PR: Parallel distributed processing. Explorations in the microstructure of cognition 2, 1986 McClelland JL, Rumelhart DE, Group PR: Parallel distributed processing. Explorations in the microstructure of cognition 2, 1986
53.
Zurück zum Zitat Levenberg K: A method for the solution of certain problems in least squares. Quarterly of applied mathematics 2:164–168, 1944CrossRef Levenberg K: A method for the solution of certain problems in least squares. Quarterly of applied mathematics 2:164–168, 1944CrossRef
54.
Zurück zum Zitat Marquardt DW: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics 11:431–441, 1963CrossRef Marquardt DW: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics 11:431–441, 1963CrossRef
55.
Zurück zum Zitat Suzuki K, Abe H, MacMahon H, Doi K: Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Medical imaging. IEEE Transactions on 25:406–416, 2006 Suzuki K, Abe H, MacMahon H, Doi K: Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Medical imaging. IEEE Transactions on 25:406–416, 2006
56.
Zurück zum Zitat Lewis CD: Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting: Butterworth Scientific London, 1982 Lewis CD: Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting: Butterworth Scientific London, 1982
57.
Zurück zum Zitat Stone M: Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society Series B (Methodological):111–147, 1974 Stone M: Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society Series B (Methodological):111–147, 1974
60.
Zurück zum Zitat Abdi H, Williams LJ: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2:433–459, 2010CrossRef Abdi H, Williams LJ: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2:433–459, 2010CrossRef
Metadaten
Titel
An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images
verfasst von
Herng-Hua Chang
Yu-Ju Lin
Audrey Haihong Zhuang
Publikationsdatum
07.08.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 1/2019
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0110-y

Weitere Artikel der Ausgabe 1/2019

Journal of Digital Imaging 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.