Skip to main content
main-content

07.08.2018

An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images

Zeitschrift:
Journal of Digital Imaging
Autoren:
Herng-Hua Chang, Yu-Ju Lin, Audrey Haihong Zhuang

Abstract

Bilateral filters have been extensively utilized in a number of image denoising applications such as segmentation, registration, and tissue classification. However, it requires burdensome adjustments of the filter parameters to achieve the best performance for each individual image. To address this problem, this paper proposes a computer-aided parameter decision system based on image texture features associated with neural networks. In our approach, parallel computing with the GPU architecture is first developed to accelerate the computation of the conventional bilateral filter. Subsequently, a back propagation network (BPN) scheme using significant image texture features as the input is established to estimate the GPU-based bilateral filter parameters and its denoising process. The k-fold cross validation method is exploited to evaluate the performance of the proposed automatic restoration framework. A wide variety of T1-weighted brain MR images were employed to train and evaluate this parameter-free decision system with GPU-based bilateral filtering, which resulted in a speed-up factor of 208 comparing to the CPU-based computation. The proposed filter parameter prediction system achieved a mean absolute percentage error (MAPE) of 6% and was classified as “high accuracy”. Our automatic denoising framework dramatically removed noise in numerous brain MR images and outperformed several state-of-the-art methods based on the peak signal-to-noise ratio (PSNR). The usage of image texture features associated with the BPN to estimate the GPU-based bilateral filter parameters and to automate the denoising process is feasible and validated. It is suggested that this automatic restoration system is advantageous to various brain MR image-processing applications.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Bis zum 22.10. bestellen und 100 € sparen!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

 

 

 
 

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise