Skip to main content
Erschienen in:

25.02.2022 | Original Paper

An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning

verfasst von: Ying Wang, Xiaosheng Yu, Chengdong Wu

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Automatic and accurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is a fundamental task in computer-aided ocular pathologies diagnosis. The complex structures, such as blood vessels and macular region, and the existence of lesions in fundus images bring great challenges to the segmentation task. Recently, the convolutional neural network-based methods have exhibited its potential in fundus image analysis. In this paper, we propose a cascaded two-stage network architecture for robust and accurate OD and OC segmentation in fundus images. In the first stage, the U-Net like framework with an improved attention mechanism and focal loss is proposed to detect accurate and reliable OD location from the full-scale resolution fundus images. Based on the outputs of the first stage, a refined segmentation network in the second stage that integrates multi-task framework and adversarial learning is further designed for OD and OC segmentation separately. The multi-task framework is conducted to predict the OD and OC masks by simultaneously estimating contours and distance maps as auxiliary tasks, which can guarantee the smoothness and shape of object in segmentation predictions. The adversarial learning technique is introduced to encourage the segmentation network to produce an output that is consistent with the true labels in space and shape distribution. We evaluate the performance of our method using two public retinal fundus image datasets (RIM-ONE-r3 and REFUGE). Extensive ablation studies and comparison experiments with existing methods demonstrate that our approach can produce competitive performance compared with state-of-the-art methods.
Literatur
1.
Zurück zum Zitat Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V: Optic disc and optic cup segmentation methodologies for glaucoma image detection. A survey. Journal of ophthalmology. 2015:1–28, 2015. Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V: Optic disc and optic cup segmentation methodologies for glaucoma image detection. A survey. Journal of ophthalmology. 2015:1–28, 2015.
2.
Zurück zum Zitat Haleem MS, Han L, Van HJ: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Comput. Med. Imaging Graph. 37 (7–8):581-596, 2013.CrossRef Haleem MS, Han L, Van HJ: Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Comput. Med. Imaging Graph. 37 (7–8):581-596, 2013.CrossRef
3.
Zurück zum Zitat Thakur N, Juneja M: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control. 42:162-189, 2018.CrossRef Thakur N, Juneja M: Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control. 42:162-189, 2018.CrossRef
4.
Zurück zum Zitat Yuki H, Wei KJE, Hong TJ: Computer-Aided Diagnosis of Glaucoma Using Fundus Images: A Review. Comput. Meth Programs Biomed. 165: 1-12, 2018.CrossRef Yuki H, Wei KJE, Hong TJ: Computer-Aided Diagnosis of Glaucoma Using Fundus Images: A Review. Comput. Meth Programs Biomed. 165: 1-12, 2018.CrossRef
5.
Zurück zum Zitat Mary MCVS., Rajsingh EB, Naik GR: Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access. 4: 4327–4354, 2016. Mary MCVS., Rajsingh EB, Naik GR: Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access. 4: 4327–4354, 2016.
6.
Zurück zum Zitat Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G: Glaucoma risk index: Automated glaucoma detection from color fundus images. Med Image Anal. 14(3):471–481, 2010.CrossRef Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G: Glaucoma risk index: Automated glaucoma detection from color fundus images. Med Image Anal. 14(3):471–481, 2010.CrossRef
7.
Zurück zum Zitat Li H, Chutatape O: Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng. 51:246–254, 2004.CrossRef Li H, Chutatape O: Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng. 51:246–254, 2004.CrossRef
8.
Zurück zum Zitat Zhou H, Schaefer G, Liu T: Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl. 49(3):447-462, 2010.CrossRef Zhou H, Schaefer G, Liu T: Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl. 49(3):447-462, 2010.CrossRef
9.
Zurück zum Zitat N. Thakur, M. Juneja: Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma. Curr Med Imaging Rev. 13(1): 99–105, 2017.CrossRef N. Thakur, M. Juneja: Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma. Curr Med Imaging Rev. 13(1): 99–105, 2017.CrossRef
10.
Zurück zum Zitat Haleem MS, Han L, Hemert JV: A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis. J Med Syst. 42(1): 20, 2018.CrossRef Haleem MS, Han L, Hemert JV: A Novel Adaptive Deformable Model for Automated Optic Disc and Cup Segmentation to Aid Glaucoma Diagnosis. J Med Syst. 42(1): 20, 2018.CrossRef
11.
Zurück zum Zitat Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H: Applications of deep learning in fundus images: A review. Medical Image Analysis. Medical Image Analysis. 69:101971, 2021. Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H: Applications of deep learning in fundus images: A review. Medical Image Analysis. Medical Image Analysis. 69:101971, 2021.
12.
Zurück zum Zitat Edupuganti VG, Chawla A, Kale A: Automatic optic disk and cup segmentation of fundus images using deep learning. In Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 2227–2231, 2018. Edupuganti VG, Chawla A, Kale A: Automatic optic disk and cup segmentation of fundus images using deep learning. In Proceedings of the 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE: 2227–2231, 2018.
13.
Zurück zum Zitat Ren S, He K, Girshick R, Sun J: Faster r-cnn: Towards realtime object detection with region proposal networks. in: Advances in neural information processing systems (NIPS), 91–99, 2015. Ren S, He K, Girshick R, Sun J: Faster r-cnn: Towards realtime object detection with region proposal networks. in: Advances in neural information processing systems (NIPS), 91–99, 2015.
14.
Zurück zum Zitat Redmon J, Farhadi A: YOLOv3: an incremental improvement. 2018. Redmon J, Farhadi A: YOLOv3: an incremental improvement. 2018.
15.
Zurück zum Zitat Liu W, Anguelov D, Erhan D, Szegedy C, Reed S: SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), 21–37, 2016. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S: SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision (ECCV), 21–37, 2016.
16.
Zurück zum Zitat Lin TY, Goyal P, Girshick R, He K, Dollar P: Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2980–2988, 2017. Lin TY, Goyal P, Girshick R, He K, Dollar P: Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2980–2988, 2017.
17.
Zurück zum Zitat Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, IEEE Computer Society. 3431–3440. Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, IEEE Computer Society. 3431–3440.
18.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. in: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, Springer. 234–241. Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. in: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, Springer. 234–241.
19.
Zurück zum Zitat Chen L, Zhu Y, Papandreou G, Schroff F, Adam, H: Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, September 8–14, 2018, Proceedings, Part VII, Springer. pp. 833–851. Chen L, Zhu Y, Papandreou G, Schroff F, Adam, H: Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, September 8–14, 2018, Proceedings, Part VII, Springer. pp. 833–851.
20.
Zurück zum Zitat Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y: Generative adversarial nets. Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8–13 2014, Montreal, Quebec, Canada, pp. 2672–2680. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y: Generative adversarial nets. Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8–13 2014, Montreal, Quebec, Canada, pp. 2672–2680.
21.
Zurück zum Zitat Welfer D, Scharcanski J, Marinho, DR: A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recognit. Lett. 34(5): 476-485, 2013.CrossRef Welfer D, Scharcanski J, Marinho, DR: A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recognit. Lett. 34(5): 476-485, 2013.CrossRef
22.
Zurück zum Zitat Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E: Optic nerve head segmentation. IEEE Trans Med Imaging. 23(2), 256-264, 2004.CrossRef Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E: Optic nerve head segmentation. IEEE Trans Med Imaging. 23(2), 256-264, 2004.CrossRef
23.
Zurück zum Zitat Xu J, Chutatape O, Chew P: Automated Optic Disk Boundary Detection by Modified Active Contour Model. IEEE Transactions on Biomedical Engineering. 2007. Xu J, Chutatape O, Chew P: Automated Optic Disk Boundary Detection by Modified Active Contour Model. IEEE Transactions on Biomedical Engineering. 2007.
24.
Zurück zum Zitat Mittapalli PS, Kande GB: Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomedical Signal Processing and Control. 24(Feb.):34–46, 2016. Mittapalli PS, Kande GB: Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomedical Signal Processing and Control. 24(Feb.):34–46, 2016.
25.
Zurück zum Zitat Thakur N, Juneja M: Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Systems with Application. 127(AUG.):308–322, 2019. Thakur N, Juneja M: Optic disc and optic cup segmentation from retinal images using hybrid approach. Expert Systems with Application. 127(AUG.):308–322, 2019.
26.
Zurück zum Zitat Aquino A, Gegúndez-Arias ME, and Marín D: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging. 29 (11): 1860-1869, 2010.CrossRef Aquino A, Gegúndez-Arias ME, and Marín D: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging. 29 (11): 1860-1869, 2010.CrossRef
27.
Zurück zum Zitat Cheng J, Liu J, Xu YW, Yin FS, Wong DWK, Tan NM, Tao DC, Cheng CY, Aung T, Wong TY: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging. 32(6): 1019-1032, 2013.CrossRef Cheng J, Liu J, Xu YW, Yin FS, Wong DWK, Tan NM, Tao DC, Cheng CY, Aung T, Wong TY: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging. 32(6): 1019-1032, 2013.CrossRef
28.
Zurück zum Zitat Zheng Y, Stambolian D, O'Brien J: Optic disc and cup segmentation from color fundus photograph using graph cut with priors. Springer Berlin Heidelberg. 2013.CrossRef Zheng Y, Stambolian D, O'Brien J: Optic disc and cup segmentation from color fundus photograph using graph cut with priors. Springer Berlin Heidelberg. 2013.CrossRef
29.
Zurück zum Zitat Xu Y, Liu J, Lin S, Xu D, Cheung C: Efficient optic cup detection from intra-image learning with retinal structure priors. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). 7510, 58–65, 2012. Xu Y, Liu J, Lin S, Xu D, Cheung C: Efficient optic cup detection from intra-image learning with retinal structure priors. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). 7510, 58–65, 2012.
30.
Zurück zum Zitat Edupuganti VG, Chawla A, Kale A: Automatic optic disk and cup segmentation of fundus images using deep learning, in: 2018 IEEE International Conference on Image Processing, ICIP 2018, Athens, Greece, October 7–10, 2018, IEEE. pp. 2227–2231, 2018. Edupuganti VG, Chawla A, Kale A: Automatic optic disk and cup segmentation of fundus images using deep learning, in: 2018 IEEE International Conference on Image Processing, ICIP 2018, Athens, Greece, October 7–10, 2018, IEEE. pp. 2227–2231, 2018.
31.
Zurück zum Zitat Zilly J, Buhmann JM, Mahapatra D: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics. 55: 28–41, 2017.CrossRef Zilly J, Buhmann JM, Mahapatra D: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics. 55: 28–41, 2017.CrossRef
32.
Zurück zum Zitat Al-Bander B, Williams B W, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng YL: Dense fully convolutional segmentation of the optic disc and cup in color fundus for glaucoma diagnosis. Symmetry. 10(4): 87, 2018.CrossRef Al-Bander B, Williams B W, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng YL: Dense fully convolutional segmentation of the optic disc and cup in color fundus for glaucoma diagnosis. Symmetry. 10(4): 87, 2018.CrossRef
33.
Zurück zum Zitat Chen L, Papandreou G, Schroff F, Adam H: Rethinking atrous convolution for semantic image segmentation. 2017. Chen L, Papandreou G, Schroff F, Adam H: Rethinking atrous convolution for semantic image segmentation. 2017.
34.
Zurück zum Zitat Mohan D, Kumar JRH, Seelamantula CS: Optic disc segmentation using cascaded multiresolution convolutional neural networks. in: 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22–25, 2019, IEEE. pp. 834–838. Mohan D, Kumar JRH, Seelamantula CS: Optic disc segmentation using cascaded multiresolution convolutional neural networks. in: 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22–25, 2019, IEEE. pp. 834–838.
35.
Zurück zum Zitat Liu Q, Hong X, Li S, Chen Z, Zhao G, Zou B: A spatialaware joint optic disc and cup segmentation method. Neurocomputing. 359, 285–297, 2019.CrossRef Liu Q, Hong X, Li S, Chen Z, Zhao G, Zou B: A spatialaware joint optic disc and cup segmentation method. Neurocomputing. 359, 285–297, 2019.CrossRef
36.
Zurück zum Zitat Wang Z, Dong N, Rosario SD, Xu M, Xie P, Xing EP: Ellipse detection of optic disc-and-cup boundary in fundus images, in: 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019, Venice, Italy, April 8–11, 2019, IEEE. pp. 601–604. Wang Z, Dong N, Rosario SD, Xu M, Xie P, Xing EP: Ellipse detection of optic disc-and-cup boundary in fundus images, in: 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019, Venice, Italy, April 8–11, 2019, IEEE. pp. 601–604.
37.
Zurück zum Zitat Sevastopolsky A: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis. 27(3): 618-624, 2017.CrossRef Sevastopolsky A: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis. 27(3): 618-624, 2017.CrossRef
38.
Zurück zum Zitat Yin PS, Xu YM, Zhu JH, Liu J, Yi CA, Huang HC, Wu QY: Deep Level Set Learning for Optic Disc and Cup Segmentation. Neurocomputing. 464, 330-341, 2021.CrossRef Yin PS, Xu YM, Zhu JH, Liu J, Yi CA, Huang HC, Wu QY: Deep Level Set Learning for Optic Disc and Cup Segmentation. Neurocomputing. 464, 330-341, 2021.CrossRef
39.
Zurück zum Zitat Sun GM, Zhang ZX, Zhang JJ, Zhu ML, Zhu XR, Yang JK, Li Y: Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening. Neural Computing and Applications. Sep 2021. Sun GM, Zhang ZX, Zhang JJ, Zhu ML, Zhu XR, Yang JK, Li Y: Joint optic disc and cup segmentation based on multi-scale feature analysis and attention pyramid architecture for glaucoma screening. Neural Computing and Applications. Sep 2021.
40.
Zurück zum Zitat Fu HZ, Cheng J, Xu YW, Wong DWK, Liu J, Cao XC: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging. 37(7): 1597-1605, 2018.CrossRef Fu HZ, Cheng J, Xu YW, Wong DWK, Liu J, Cao XC: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Transactions on Medical Imaging. 37(7): 1597-1605, 2018.CrossRef
41.
Zurück zum Zitat Son J, Park SJ, Jung KH: Towards accurate segmentation of retinal vessels and the optic disc in fundus images with generative adversarial networks. Journal of digital imaging. 1–14, 2018. Son J, Park SJ, Jung KH: Towards accurate segmentation of retinal vessels and the optic disc in fundus images with generative adversarial networks. Journal of digital imaging. 1–14, 2018.
42.
Zurück zum Zitat Wang SJ, Yu LQ, Yang X, Fu CW, Heng PA: Patch based output space adversarial learning for joint optic disc and cup segmentation. IEEE Transactions on Medical Imaging. 38 (11): 2485-2495, 2019.CrossRef Wang SJ, Yu LQ, Yang X, Fu CW, Heng PA: Patch based output space adversarial learning for joint optic disc and cup segmentation. IEEE Transactions on Medical Imaging. 38 (11): 2485-2495, 2019.CrossRef
43.
Zurück zum Zitat Jiang Y, Tan N, Peng TT. Optic disc and cup segmentation based on deep convolutional generative adversarial networks. IEEE Access. 7: 64483-64493, 2019.CrossRef Jiang Y, Tan N, Peng TT. Optic disc and cup segmentation based on deep convolutional generative adversarial networks. IEEE Access. 7: 64483-64493, 2019.CrossRef
44.
Zurück zum Zitat Wang S, Yu L, K Li, Yang X, Fu CW, Heng PA: Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation. 2019. Wang S, Yu L, K Li, Yang X, Fu CW, Heng PA: Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation. 2019.
45.
Zurück zum Zitat Murugesan B, Sarveswaran K, Shankaranarayana SM, Ram K, Joseph J, Sivaprakasam M: Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation. 2019. Murugesan B, Sarveswaran K, Shankaranarayana SM, Ram K, Joseph J, Sivaprakasam M: Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation. 2019.
46.
Zurück zum Zitat Fumero F, Alay´on S, Sanchez J, Sigut J, Gonzalez-Hernandez M: Rim-one: An open retinal image database for optic nerve evaluation. in: Computer-Based Medical Systems (CBMS), 2011 24th International Symposium on. IEEE, 2011, pp. 1–6. https://refuge.grand-challenge.org/ Fumero F, Alay´on S, Sanchez J, Sigut J, Gonzalez-Hernandez M: Rim-one: An open retinal image database for optic nerve evaluation. in: Computer-Based Medical Systems (CBMS), 2011 24th International Symposium on. IEEE, 2011, pp. 1–6. https://​refuge.​grand-challenge.​org/​
47.
Zurück zum Zitat Liu P, Kong B, Li Z, Zhang S, Fang R: CFEA: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation, in: Medical Image Computing and Computer Assisted Intervention 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part V, Springer. pp. 521–529. Liu P, Kong B, Li Z, Zhang S, Fang R: CFEA: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation, in: Medical Image Computing and Computer Assisted Intervention 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part V, Springer. pp. 521–529.
48.
Zurück zum Zitat Agrawal V., Kori A., Alex V., et al. Enhanced Optic Disk and Cup Segmentation with Glaucoma Screening from Fundus Images using Position encoded CNNs. 2018. Agrawal V., Kori A., Alex V., et al. Enhanced Optic Disk and Cup Segmentation with Glaucoma Screening from Fundus Images using Position encoded CNNs. 2018.
49.
Zurück zum Zitat Sevastopolsky A., Drapak S., Kiselev K., et al. Stack-U-Net: refinement network for improved optic disc and cup image segmentation. Image Processing. 2019. Sevastopolsky A., Drapak S., Kiselev K., et al. Stack-U-Net: refinement network for improved optic disc and cup image segmentation. Image Processing. 2019.
Metadaten
Titel
An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning
verfasst von
Ying Wang
Xiaosheng Yu
Chengdong Wu
Publikationsdatum
25.02.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-021-00579-3

Neu im Fachgebiet Radiologie

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.