Skip to main content
Erschienen in: European Radiology 10/2010

01.10.2010 | Head and Neck

An exploratory pilot study into the association between microcirculatory parameters derived by MRI-based pharmacokinetic analysis and glucose utilization estimated by PET-CT imaging in head and neck cancer

verfasst von: Sotirios Bisdas, Oliver Seitz, Markus Middendorp, Nicole Chambron-Pinho, Theodosios Bisdas, Thomas J. Vogl, Renate Hammerstingl, Ulrike Ernemann, Martin G. Mack

Erschienen in: European Radiology | Ausgabe 10/2010

Einloggen, um Zugang zu erhalten

Abstract

Objectives:

To examine the feasibility of deriving quantitative microcirculatory parameters and to investigate the relationship between vascular and metabolic characteristics of head and neck tumours in vivo, using dynamic contrast-enhanced (DCE) MRI and fluorodeoxyglucose (FDG) PET imaging.

Methods:

Twenty-seven patients with primary squamous cell carcinoma (SCCA) underwent DCE-MRI and combined PET/CT imaging. DCE-MRI data were post-processed by using commercially available software. Transfer constant (K trans), extravascular extracellular blood volume (v e), transfer constant from the extracellular extravascular space to plasma (k ep) and iAUC (initial area under the signal intensity–time curve) were calculated. 3D static PET data were acquired and standardised uptake values (SUV) calculated.

Results:

All microcirculatory parameters in tumours were higher than in normal muscle tissue (P ≤ 0.0019). Significant correlations were shown between k ep and K trans (ρ = 0.77), v e and k ep (ρ = −0.7), and iAUC and v e (ρ = 0.53). Significant correlations were observed for SUVmean and v e as well as iAUC (ρ = 0.42 and ρ = 0.66, respectively). SUVmax was significantly correlated with iAUC (ρ = 0.69).

Conclusions:

The demonstrated relationships between vascular and metabolic characteristics of primary SCCA imply a complex interaction between vascular delivery characteristics and tumour metabolism. The lack of correlation between SUV and K trans/k ep suggests that both diagnostic techniques may provide complementary information.
Literatur
1.
Zurück zum Zitat Bisdas S, Baghi M, Smolarz A et al (2007) Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 42:172–179CrossRefPubMed Bisdas S, Baghi M, Smolarz A et al (2007) Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 42:172–179CrossRefPubMed
2.
Zurück zum Zitat Gandhi D, Hoeffner EG, Carlos RC et al (2003) Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 27:687–693CrossRefPubMed Gandhi D, Hoeffner EG, Carlos RC et al (2003) Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 27:687–693CrossRefPubMed
3.
Zurück zum Zitat Hermans R, Meijerink M, Van den Bogaert W et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57:1351–1356PubMed Hermans R, Meijerink M, Van den Bogaert W et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57:1351–1356PubMed
4.
Zurück zum Zitat Rumboldt Z, Al-Okaili R, Deveikis JP (2005) Perfusion CT for head and neck tumors: pilot study. AJNR Am J Neuroradiol 26:1178–1185PubMed Rumboldt Z, Al-Okaili R, Deveikis JP (2005) Perfusion CT for head and neck tumors: pilot study. AJNR Am J Neuroradiol 26:1178–1185PubMed
5.
Zurück zum Zitat Surlan-Popovic K, Bisdas S, Rumboldt Z et al (2010) Changes in perfusion CT of advanced squamous cell carcinoma of the head and neck treated during the course of concomitant chemoradiotherapy. AJNR Am J Neuroradiol 31:570–575 Surlan-Popovic K, Bisdas S, Rumboldt Z et al (2010) Changes in perfusion CT of advanced squamous cell carcinoma of the head and neck treated during the course of concomitant chemoradiotherapy. AJNR Am J Neuroradiol 31:570–575
6.
Zurück zum Zitat Zima A, Carlos R, Gandhi D et al (2007) Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol 28:328–334PubMed Zima A, Carlos R, Gandhi D et al (2007) Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol 28:328–334PubMed
7.
Zurück zum Zitat Hoskin PJ, Saunders MI, Goodchild K et al (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72:1093–1098PubMed Hoskin PJ, Saunders MI, Goodchild K et al (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72:1093–1098PubMed
8.
Zurück zum Zitat Kim S, Loevner LA, Quon H et al (2009) Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A1817 Kim S, Loevner LA, Quon H et al (2009) Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. doi:10.​3174/​ajnr.​A1817
9.
Zurück zum Zitat Newbold K, Castellano I, Charles-Edwards E et al (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:29–37PubMed Newbold K, Castellano I, Charles-Edwards E et al (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int J Radiat Oncol Biol Phys 74:29–37PubMed
10.
Zurück zum Zitat Baba Y, Yamashita Y, Onomichi M et al (1999) Dynamic magnetic resonance imaging of head and neck lesions. Top Magn Reson Imaging 10:125–129CrossRefPubMed Baba Y, Yamashita Y, Onomichi M et al (1999) Dynamic magnetic resonance imaging of head and neck lesions. Top Magn Reson Imaging 10:125–129CrossRefPubMed
11.
Zurück zum Zitat Escott EJ, Rao VM, Ko WD et al (1997) Comparison of dynamic contrast-enhanced gradient-echo and spin-echo sequences in MR of head and neck neoplasms. AJNR Am J Neuroradiol 18:1411–1419PubMed Escott EJ, Rao VM, Ko WD et al (1997) Comparison of dynamic contrast-enhanced gradient-echo and spin-echo sequences in MR of head and neck neoplasms. AJNR Am J Neuroradiol 18:1411–1419PubMed
12.
Zurück zum Zitat Guckel C, Schnabel K, Deimling M et al (1996) Dynamic snapshot gradient-echo imaging of head and neck malignancies: time dependency and quality of contrast-to-noise ratio. Magma 4:61–69CrossRefPubMed Guckel C, Schnabel K, Deimling M et al (1996) Dynamic snapshot gradient-echo imaging of head and neck malignancies: time dependency and quality of contrast-to-noise ratio. Magma 4:61–69CrossRefPubMed
13.
Zurück zum Zitat Al-Ibraheem A, Buck A, Krause BJ et al (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009:208725PubMed Al-Ibraheem A, Buck A, Krause BJ et al (2009) Clinical applications of FDG PET and PET/CT in head and neck cancer. J Oncol 2009:208725PubMed
14.
Zurück zum Zitat Ng SH, Yen TC, Chang JT et al (2006) Prospective study of [18F]fluorodeoxyglucose positron emission tomography and computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with palpably negative neck. J Clin Oncol 24:4371–4376CrossRefPubMed Ng SH, Yen TC, Chang JT et al (2006) Prospective study of [18F]fluorodeoxyglucose positron emission tomography and computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with palpably negative neck. J Clin Oncol 24:4371–4376CrossRefPubMed
15.
Zurück zum Zitat Lyford-Pike S, Ha PK, Jacene HA et al (2009) Limitations of PET/CT in determining need for neck dissection after primary chemoradiation for advanced head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 71:251–256PubMed Lyford-Pike S, Ha PK, Jacene HA et al (2009) Limitations of PET/CT in determining need for neck dissection after primary chemoradiation for advanced head and neck squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 71:251–256PubMed
16.
Zurück zum Zitat Seitz O, Chambron-Pinho N, Middendorp M et al (2009) 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 51:677–686CrossRefPubMed Seitz O, Chambron-Pinho N, Middendorp M et al (2009) 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology 51:677–686CrossRefPubMed
17.
Zurück zum Zitat Chung MK, Jeong HS, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15:5861–5868CrossRefPubMed Chung MK, Jeong HS, Park SG et al (2009) Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 15:5861–5868CrossRefPubMed
18.
Zurück zum Zitat Galban CJ, Chenevert TL, Meyer CR et al (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15:572–576CrossRefPubMed Galban CJ, Chenevert TL, Meyer CR et al (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15:572–576CrossRefPubMed
19.
Zurück zum Zitat Bisdas S, Spicer K, Rumboldt Z (2008) Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. AJNR Am J Neuroradiol 29:1376–1381CrossRefPubMed Bisdas S, Spicer K, Rumboldt Z (2008) Whole-tumor perfusion CT parameters and glucose metabolism measurements in head and neck squamous cell carcinomas: a pilot study using combined positron-emission tomography/CT imaging. AJNR Am J Neuroradiol 29:1376–1381CrossRefPubMed
20.
Zurück zum Zitat Hirasawa S, Tsushima Y, Takei H et al (2007) Inverse correlation between tumor perfusion and glucose uptake in human head and neck tumors. Acad Radiol 14:312–318CrossRefPubMed Hirasawa S, Tsushima Y, Takei H et al (2007) Inverse correlation between tumor perfusion and glucose uptake in human head and neck tumors. Acad Radiol 14:312–318CrossRefPubMed
21.
Zurück zum Zitat Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367CrossRefPubMed Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367CrossRefPubMed
23.
Zurück zum Zitat Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMed Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMed
24.
Zurück zum Zitat Baek CH, Chung MK, Son YI et al (2008) Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med 49:1422–1428CrossRefPubMed Baek CH, Chung MK, Son YI et al (2008) Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med 49:1422–1428CrossRefPubMed
25.
Zurück zum Zitat Noworolski SM, Fischbein NJ, Kaplan MJ et al (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. J Magn Reson Imaging 17:455–462CrossRefPubMed Noworolski SM, Fischbein NJ, Kaplan MJ et al (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. J Magn Reson Imaging 17:455–462CrossRefPubMed
26.
Zurück zum Zitat Kim S, Quon H, Loevner LA et al (2007) Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging 26:1607–1617CrossRefPubMed Kim S, Quon H, Loevner LA et al (2007) Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging 26:1607–1617CrossRefPubMed
27.
Zurück zum Zitat Jackson A, Haroon H, Zhu XP et al (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMed Jackson A, Haroon H, Zhu XP et al (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMed
28.
Zurück zum Zitat George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636CrossRefPubMed George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636CrossRefPubMed
29.
Zurück zum Zitat van Laarhoven HW, Klomp DW, Rijpkema M et al (2007) Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil. NMR Biomed 20:128–140CrossRefPubMed van Laarhoven HW, Klomp DW, Rijpkema M et al (2007) Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil. NMR Biomed 20:128–140CrossRefPubMed
30.
Zurück zum Zitat Zhou R, Pickup S, Yankeelov TE et al (2004) Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 52:248–257CrossRefPubMed Zhou R, Pickup S, Yankeelov TE et al (2004) Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: effects of transcytolemmal water exchange. Magn Reson Med 52:248–257CrossRefPubMed
31.
Zurück zum Zitat Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMed Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMed
32.
Zurück zum Zitat Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429CrossRefPubMed Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429CrossRefPubMed
33.
Zurück zum Zitat Zhu XP, Li KL, Kamaly-Asl ID et al (2000) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585CrossRefPubMed Zhu XP, Li KL, Kamaly-Asl ID et al (2000) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585CrossRefPubMed
34.
Zurück zum Zitat Parker GJ, Suckling J, Tanner SF et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7:564–574CrossRefPubMed Parker GJ, Suckling J, Tanner SF et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7:564–574CrossRefPubMed
35.
Zurück zum Zitat Zhao J, Salmon H, Sarntinoranont M (2007) Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–236CrossRefPubMed Zhao J, Salmon H, Sarntinoranont M (2007) Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–236CrossRefPubMed
36.
Zurück zum Zitat Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593CrossRefPubMed Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593CrossRefPubMed
37.
Zurück zum Zitat Pellerin M, Yankeelov TE, Lepage M (2007) Incorporating contrast agent diffusion into the analysis of DCE-MRI data. Magn Reson Med 58:1124–1134CrossRefPubMed Pellerin M, Yankeelov TE, Lepage M (2007) Incorporating contrast agent diffusion into the analysis of DCE-MRI data. Magn Reson Med 58:1124–1134CrossRefPubMed
38.
Zurück zum Zitat Bisdas S, Rumboldt Z, Wagenblast J et al (2009) Response and progression-free survival in oropharynx squamous cell carcinoma assessed by pretreatment perfusion CT: comparison with tumor volume measurements. AJNR Am J Neuroradiol 30:793–799CrossRefPubMed Bisdas S, Rumboldt Z, Wagenblast J et al (2009) Response and progression-free survival in oropharynx squamous cell carcinoma assessed by pretreatment perfusion CT: comparison with tumor volume measurements. AJNR Am J Neuroradiol 30:793–799CrossRefPubMed
39.
Zurück zum Zitat Cao Y, Popovtzer A, Li D et al (2008) Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 72:1287–1290PubMed Cao Y, Popovtzer A, Li D et al (2008) Early prediction of outcome in advanced head-and-neck cancer based on tumor blood volume alterations during therapy: a prospective study. Int J Radiat Oncol Biol Phys 72:1287–1290PubMed
40.
Zurück zum Zitat Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMed
41.
Zurück zum Zitat Bisdas S, Medov L, Baghi M et al (2008) A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850CrossRefPubMed Bisdas S, Medov L, Baghi M et al (2008) A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18:843–850CrossRefPubMed
42.
Zurück zum Zitat Eby PR, Partridge SC, White SW et al (2008) Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 15:1246–1254CrossRefPubMed Eby PR, Partridge SC, White SW et al (2008) Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 15:1246–1254CrossRefPubMed
43.
Zurück zum Zitat Tseng J, Dunnwald LK, Schubert EK et al (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45:1829–1837PubMed Tseng J, Dunnwald LK, Schubert EK et al (2004) 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med 45:1829–1837PubMed
44.
Zurück zum Zitat Torizuka T, Zasadny KR, Recker B et al (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767–774PubMed Torizuka T, Zasadny KR, Recker B et al (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767–774PubMed
45.
Zurück zum Zitat Semple SI, Gilbert FJ, Redpath TW et al (2004) The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 14:2038–2045CrossRefPubMed Semple SI, Gilbert FJ, Redpath TW et al (2004) The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 14:2038–2045CrossRefPubMed
46.
Zurück zum Zitat Brix G, Henze M, Knopp MV et al (2001) Comparison of pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in the diagnosis of breast cancer: initial experience. Eur Radiol 11:2058–2070CrossRefPubMed Brix G, Henze M, Knopp MV et al (2001) Comparison of pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in the diagnosis of breast cancer: initial experience. Eur Radiol 11:2058–2070CrossRefPubMed
47.
Zurück zum Zitat Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 43:500–509PubMed Mankoff DA, Dunnwald LK, Gralow JR et al (2002) Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 43:500–509PubMed
48.
Zurück zum Zitat Avril N, Bense S, Ziegler SI et al (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191PubMed Avril N, Bense S, Ziegler SI et al (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191PubMed
49.
Zurück zum Zitat Komar G, Kauhanen S, Liukko K et al (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517CrossRefPubMed Komar G, Kauhanen S, Liukko K et al (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517CrossRefPubMed
Metadaten
Titel
An exploratory pilot study into the association between microcirculatory parameters derived by MRI-based pharmacokinetic analysis and glucose utilization estimated by PET-CT imaging in head and neck cancer
verfasst von
Sotirios Bisdas
Oliver Seitz
Markus Middendorp
Nicole Chambron-Pinho
Theodosios Bisdas
Thomas J. Vogl
Renate Hammerstingl
Ulrike Ernemann
Martin G. Mack
Publikationsdatum
01.10.2010
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 10/2010
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-010-1803-x

Weitere Artikel der Ausgabe 10/2010

European Radiology 10/2010 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.