Skip to main content
Erschienen in: Acta Neurologica Belgica 2/2020

07.11.2018 | Original Article

An initial experience with intraoperative O-Arm for deep brain stimulation surgery: can it replace post-operative MRI?

verfasst von: Majed Jouma Katati, Vidal A. Jover, Velasco B. Iañez, Pérez M. J. Navarro, Sabido J. de la Cruz, Ortiz G. García, Sevilla F. Escamilla, Castellanos A. Mínguez

Erschienen in: Acta Neurologica Belgica | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Deep brain stimulation (DBS) is used to treat movement disorders, severe psychiatric disorders, and neuropathic pain, among other diseases. Advanced neuroimaging techniques allow direct or indirect localization of the target site, which is verified in many centers by the intraoperative recording of unitary neuronal activity. Intraoperative image acquisition technology (e.g., O-Arm) is increasingly used for accurate electrode positioning throughout the surgery. The aim of our study is to analyze the initial experience of our team in the utilization of O-Arm for planning DBS and monitoring its precision and accuracy throughout the procedure. The study included 13 patients with movement disorders. All underwent DBS with the intraoperative O-arm image acquisition system (iCT) and Medtronic StealthStation S7 cranial planning system, placing a total of 25 electrodes. For each patient, we calculated the difference between real and theoretic x, y, z coordinates, using the paired Student’s t test to evaluate absolute and directional differences and the one-sample Student’s t test to analyze differences in Euclidean distances. No statistically significant differences were found in absolute, directional, or Euclidean distances between intended and actual x, y, and z coordinates, based on iCT scan. Our experience confirms that utilization of the O-Arm system in DBS provides accurate and precise verification of electrode placements throughout the procedure. Recent studies found no significant differences between iCT and postoperative MRI, the current gold standard. Further prospective studies are warranted to test the elimination of postoperative MRI when this system is used.
Literatur
1.
Zurück zum Zitat Kalia SK, Sankar T, Lozano AM (2013) Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol 26:374–380CrossRef Kalia SK, Sankar T, Lozano AM (2013) Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol 26:374–380CrossRef
2.
Zurück zum Zitat Rezai AR, Sharma M (2014) Deep brain stimulation (DBS): current and emerging applications. Jpn J Neurosurg 23:648–660CrossRef Rezai AR, Sharma M (2014) Deep brain stimulation (DBS): current and emerging applications. Jpn J Neurosurg 23:648–660CrossRef
3.
Zurück zum Zitat Sharma M, Ambekar S, Guthikonda B et al (2013) Regional trends and the impact of various patient and hospital factors on outcomes and costs of hospitalization between academic and nonacademic centers after deep brain stimulation surgery for Parkinson’s disease: a United States Nationwide Inpatient Sample analysis from 2006 to 2010. Neurosurg Focus 35:E2CrossRef Sharma M, Ambekar S, Guthikonda B et al (2013) Regional trends and the impact of various patient and hospital factors on outcomes and costs of hospitalization between academic and nonacademic centers after deep brain stimulation surgery for Parkinson’s disease: a United States Nationwide Inpatient Sample analysis from 2006 to 2010. Neurosurg Focus 35:E2CrossRef
4.
Zurück zum Zitat Kopell BH, Greenberg B, Rezai AR (2004) Deep brain stimulation for psychiatric disorders. J Clin Neurophysiol 21:51–67CrossRef Kopell BH, Greenberg B, Rezai AR (2004) Deep brain stimulation for psychiatric disorders. J Clin Neurophysiol 21:51–67CrossRef
5.
Zurück zum Zitat Sharma M, Saleh E, Deogaonkar M et al (2015) DBS for Obsessive-Compulsive Disorder. In: Sun B, Salles AD (eds) Neurosurgical treatments for psychiatric disorders, vol 23. Springer, Netherlands, pp 113–123 Sharma M, Saleh E, Deogaonkar M et al (2015) DBS for Obsessive-Compulsive Disorder. In: Sun B, Salles AD (eds) Neurosurgical treatments for psychiatric disorders, vol 23. Springer, Netherlands, pp 113–123
6.
Zurück zum Zitat Henderson JM (2007) Vagal nerve stimulation versus deep brain stimulation for treatment-resistant depression: show me the data. Clin Neurosurg 54:88–90PubMed Henderson JM (2007) Vagal nerve stimulation versus deep brain stimulation for treatment-resistant depression: show me the data. Clin Neurosurg 54:88–90PubMed
7.
Zurück zum Zitat Ellis TM, Foote KD, Fernandez HH, Sudhyadhom A, Rodriguez RL, Zeilman P, Jacobson CE, Okun MS (2008) Reoperation for suboptimal outcomes after deep brain stimulation surgery. Neurosurgery 63:754–760CrossRef Ellis TM, Foote KD, Fernandez HH, Sudhyadhom A, Rodriguez RL, Zeilman P, Jacobson CE, Okun MS (2008) Reoperation for suboptimal outcomes after deep brain stimulation surgery. Neurosurgery 63:754–760CrossRef
8.
Zurück zum Zitat Hu X, Jiang X, Zhou X, Liang J, Wang L, Cao Y, Liu J, Jin A, Yang P (2010) Avoidance and management of surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg 88(5):296–303CrossRef Hu X, Jiang X, Zhou X, Liang J, Wang L, Cao Y, Liu J, Jin A, Yang P (2010) Avoidance and management of surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg 88(5):296–303CrossRef
9.
Zurück zum Zitat Martin AJ, Larson PS, Ostrem JL et al (2005) Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Mag Reson Med 54:1107–1114CrossRef Martin AJ, Larson PS, Ostrem JL et al (2005) Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Mag Reson Med 54:1107–1114CrossRef
10.
Zurück zum Zitat Miller KJ, Makeig S, Hebb AO, Rao RPN, denNijs M, Ojemann JG (2007) Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: the ‘‘Location on Cortex’’ (LOC) package for MATLAB. J Neurosci Methods 162(1–2):303–308CrossRef Miller KJ, Makeig S, Hebb AO, Rao RPN, denNijs M, Ojemann JG (2007) Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: the ‘‘Location on Cortex’’ (LOC) package for MATLAB. J Neurosci Methods 162(1–2):303–308CrossRef
11.
Zurück zum Zitat Starr PA, Martin AJ, Larson PS (2009) Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am 20:193–203CrossRef Starr PA, Martin AJ, Larson PS (2009) Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am 20:193–203CrossRef
12.
Zurück zum Zitat Starr PA, Martin AJ, Ostrem JL et al (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490CrossRef Starr PA, Martin AJ, Ostrem JL et al (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490CrossRef
13.
Zurück zum Zitat Burchiel KJ, McCartney S, Lee A et al (2013) Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg 119:301–306CrossRef Burchiel KJ, McCartney S, Lee A et al (2013) Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg 119:301–306CrossRef
14.
Zurück zum Zitat Holloway KL, Gaede SE, Starr PA et al (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413CrossRef Holloway KL, Gaede SE, Starr PA et al (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413CrossRef
15.
Zurück zum Zitat Shahlaie K, Larson PS, Starr PA (2011) Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery 68:114–124; (discussion 124) PubMed Shahlaie K, Larson PS, Starr PA (2011) Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery 68:114–124; (discussion 124) PubMed
16.
Zurück zum Zitat Fiegele T, Feuchtner G, Sohm F et al (2008) Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinson Relat Disord 14:595–599CrossRef Fiegele T, Feuchtner G, Sohm F et al (2008) Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinson Relat Disord 14:595–599CrossRef
17.
Zurück zum Zitat Smith AP, Bakay RA (2011) Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J Neurosurg 115:301–309CrossRef Smith AP, Bakay RA (2011) Frameless deep brain stimulation using intraoperative O-arm technology. Clinical article. J Neurosurg 115:301–309CrossRef
18.
Zurück zum Zitat Sharma M, Rhiew R, Deogaonkar M et al (2014) Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery. Neurol India 62:503–509CrossRef Sharma M, Rhiew R, Deogaonkar M et al (2014) Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery. Neurol India 62:503–509CrossRef
19.
Zurück zum Zitat Hamani C, Lozano AM (2006) Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact Funct Neurosurg 84(5–6):248–251CrossRef Hamani C, Lozano AM (2006) Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact Funct Neurosurg 84(5–6):248–251CrossRef
20.
Zurück zum Zitat Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER (2009) Dosimetric characterization of a cone-beam O-arm imaging system. J Xray Sci Technol 17:305–317PubMed Zhang J, Weir V, Fajardo L, Lin J, Hsiung H, Ritenour ER (2009) Dosimetric characterization of a cone-beam O-arm imaging system. J Xray Sci Technol 17:305–317PubMed
21.
Zurück zum Zitat Lee DJ, Zwienenberg-Lee M, Seyal M, Shahlaie K (2015) Intraoperative computed tomography for intracranial electrode implantation surgery in medically refractory epilepsy. J Neurosurg 122:526–531CrossRef Lee DJ, Zwienenberg-Lee M, Seyal M, Shahlaie K (2015) Intraoperative computed tomography for intracranial electrode implantation surgery in medically refractory epilepsy. J Neurosurg 122:526–531CrossRef
22.
Zurück zum Zitat Smith AP, Bakay RA (2011) Frameless deep brain stimulation using intraoperative O-arm technology. J Neurosurg 115:301–309CrossRef Smith AP, Bakay RA (2011) Frameless deep brain stimulation using intraoperative O-arm technology. J Neurosurg 115:301–309CrossRef
23.
Zurück zum Zitat Servello D, Zekaj E, Saleh C, Pacchetti C, Porta M (2016) The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: a retrospective study. Surg Neurol Int 7:551–556CrossRef Servello D, Zekaj E, Saleh C, Pacchetti C, Porta M (2016) The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: a retrospective study. Surg Neurol Int 7:551–556CrossRef
24.
Zurück zum Zitat Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107:989–997CrossRef Miyagi Y, Shima F, Sasaki T (2007) Brain shift: an error factor during implantation of deep brain stimulation electrodes. J Neurosurg 107:989–997CrossRef
25.
Zurück zum Zitat Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86:37–43CrossRef Halpern CH, Danish SF, Baltuch GH, Jaggi JL (2008) Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg 86:37–43CrossRef
26.
Zurück zum Zitat Bot M, van den Munckhof P, Bakay R, Stebbins G, Verhagen Metman L (2017) Accuracy of Intraoperative computed tomography during deep brain stimulation procedures: comparison with postoperative magnetic resonance imaging. Stereotact Funct Neurosurg 95:183–188CrossRef Bot M, van den Munckhof P, Bakay R, Stebbins G, Verhagen Metman L (2017) Accuracy of Intraoperative computed tomography during deep brain stimulation procedures: comparison with postoperative magnetic resonance imaging. Stereotact Funct Neurosurg 95:183–188CrossRef
Metadaten
Titel
An initial experience with intraoperative O-Arm for deep brain stimulation surgery: can it replace post-operative MRI?
verfasst von
Majed Jouma Katati
Vidal A. Jover
Velasco B. Iañez
Pérez M. J. Navarro
Sabido J. de la Cruz
Ortiz G. García
Sevilla F. Escamilla
Castellanos A. Mínguez
Publikationsdatum
07.11.2018
Verlag
Springer International Publishing
Erschienen in
Acta Neurologica Belgica / Ausgabe 2/2020
Print ISSN: 0300-9009
Elektronische ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-018-1037-2

Weitere Artikel der Ausgabe 2/2020

Acta Neurologica Belgica 2/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.