Skip to main content
Erschienen in: Diabetologia 1/2011

Open Access 01.01.2011 | Short Communication

An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice

verfasst von: L. A. Sadacca, K. A. Lamia, A. S. deLemos, B. Blum, C. J. Weitz

Erschienen in: Diabetologia | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Aims/hypothesis

Loss of circadian clocks from all tissues causes defective glucose homeostasis as well as loss of feeding and activity rhythms. Little is known about peripheral tissue clocks, so we tested the hypothesis that an intrinsic circadian clock of the pancreas is important for glucose homeostasis.

Methods

We monitored real-time bioluminescence of pancreas explants from circadian reporter mice and examined clock gene expression in beta cells by immunohistochemistry and in situ hybridisation. We generated mice selectively lacking the essential clock gene Bmal1 (also known as Arntl) in the pancreas and tested mutant mice and littermate controls for glucose and insulin tolerance, insulin production and behaviour. We examined islets isolated from mutants and littermate controls for glucose-stimulated insulin secretion and total insulin content.

Results

Pancreas explants exhibited robust circadian rhythms. Clock genes Bmal1 and Per1 were expressed in beta cells. Despite normal activity and feeding behaviour, mutant mice lacking clock function in the pancreas had severe glucose intolerance and defective insulin production; their isolated pancreatic islets had defective glucose-stimulated insulin secretion, but normal total insulin content.

Conclusions/interpretation

The mouse pancreas has an autonomous clock function and beta cells are very likely to be one of the pancreatic cell types possessing an intrinsic clock. The Bmal1 circadian clock gene is required in the pancreas, probably in beta cells, for normal insulin secretion and glucose homeostasis. Our results provide evidence for a previously unrecognised molecular regulator of pancreatic glucose-sensing and/or insulin secretion.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00125-010-1920-8) contains supplementary material, which is available to authorised users.
L. A. Sadacca and K. A. Lamia contributed equally to this work.
Abkürzungen
BMAL1
Brain, muscle Arnt-like 1
KRBH
KRB containing bicarbonate and HEPES
SCN
Suprachiasmatic nucleus
ZT
Zeitgeber

Introduction

Circadian clocks are cell-autonomous molecular oscillators that drive daily rhythms of physiology and behaviour. In mammals, the clock of the suprachiasmatic nucleus (SCN) in the brain drives the rest–activity cycle and modulates physiology through autonomic and neuroendocrine control of visceral organ function [1]. Many peripheral tissues have intrinsic clocks, but at present there is only limited information about their functions [2].
Mice with germ-line mutations of circadian clock function have abnormal glucose homeostasis, regardless of whether the mutation affects positive (Clock [3] or Bmal1 [also known as Arntl] −/− [2, 4]) or negative (Per1 −/− , Per2 −/− [2]) elements of the clock feedback loop. This suggests that glucose homeostasis abnormalities arise from disrupted clock function rather than from an unrelated function of a particular clock gene. Because these mice lack clock function in all tissues, abnormal glucose homeostasis could have arisen from (1) a defect of the SCN clock (and the consequent abnormal activity and feeding), (2) other brain clocks or (3) clocks of peripheral tissues. Bmal1 −/− mice have significantly reduced circulating insulin [2], so it is plausible that a clock within the pancreas, particularly in the insulin-producing beta cells of the islets of Langerhans, might be crucial for glucose homeostasis.

Methods

Mice
Mice (Pdx1-Cre) were provided by D. Melton (Harvard University, Department of Molecular and Cellular Biology, Cambridge, MA, USA) [5]. We generated Bmal1 lox/lox [6] and Bmal1-Luc mice [7]. Mice (hybrid C57BL/6;129 background) were entrained to a 12 h light–dark cycle for 2 weeks prior to experiments. Genotyping was performed as described [6]. Studies were performed in accordance with a protocol approved by the Harvard Medical School Standing Committee on Animals.
Real-time recordings of circadian bioluminescence
Explants of pancreas from Bmal1-Luc circadian reporter mice were dissected, placed in medium (2 ml DMEM, supplemented with protease inhibitors, 10% [vol./vol.] FBS, 100 U/ml penicillin, 100 μg/ml streptomycin and 250 μmol/l d-luciferin), cultured and monitored for bioluminescence as described [7].
Glucose and insulin tolerance tests
Glucose and insulin tolerance tests, and insulin determination were performed as described [2]. For glucose tolerance tests across the circadian cycle, manipulations were performed under dim red light.
Immunohistochemistry and in situ hybridisation
Mice with Bmal1 deleted from the pancreas (Panc-Bmal1 −/− ) and Pdx1-Cre littermates (n = 3 for each) were killed and the pancreas dissected into 4% formaldehyde in PBS. Pancreases were post-fixed (2 h, 4°C), fixative was removed by washes in PBS and tissue was cryoprotected overnight (4°C, 30% [wt/vol.] sucrose in PBS). Pancreases were then embedded and frozen, and 10 μm sections were cut on a cryostat, dried and stored at −80°C.
Insulin immunohistochemistry was performed using guinea pig anti-insulin (1:700; Dako, Glostrup, Denmark), followed by donkey anti-guinea pig secondary antibody (1:200; Invitrogen, Carlsbad, CA, USA). For double-label immunostaining with in situ hybridisation, fluorescence in situ hybridisation was performed as described in the Electronic supplementary material (ESM) Methods. Estimation of islet number was performed by counting the number of islets (identified by insulin immunostaining) per 10 μm section of four to seven sections per mouse, using three mice per genotype. Islet area and staining intensity (12–14 islets per genotype) were measured by circling islets in insulin immunofluorescence images and measuring area and mean grey value with ImageJ software (ESM Methods).
Glucose-stimulated insulin secretion
Pancreatic islets were isolated from mice and incubated overnight for recovery in DMED containing 1 mg/ml glucose (Sigma, St Louis, MO, USA) and 10% FBS. For glucose-stimulated insulin secretion, isolated islets were incubated in KRB containing bicarbonate and HEPES (KRBH; 129 mmol/l NaCl, 4.8 mmol/l KCl, 2.5 mmol/l CaCl2, 1.2 mmol/l KH2PO4, 1.2 mmol/l MgSO4, 5 mmol/l NaHCO3, 10 mmol/l HEPES, 0.1% (vol./vol.) BSA) with 2.8 mmol/l d-glucose for a 1 h for wash. Triplicates of ten islets were then incubated for 75 min in KRBH buffer containing either low (2.8 mmol/l) or high (16.7 mmol/l) d-glucose. Insulin in supernatant fractions was measured using an ELISA kit (Mouse Insulin Ultrasensitive; Alpco Diagnostics, Salem, NH, USA). For insulin content, groups of ten isolated islets were incubated overnight at −80°C in acidic ethanol (1.5% [vol./vol.] HCl in 70% [vol./vol.] ethanol), followed by centrifugation (20,000 g, 10 min) and measurement of insulin content as above.
Statistical analysis
Statistical analysis was performed by ANOVA or Student’s t test, as indicated. A value of p < 0.05 was considered significant.

Results

To determine whether the mouse pancreas contains a circadian clock, as reported in rats [8, 9], we cultured pancreas explants from Bmal1-Luc mice, a circadian reporter line [7]. The explants exhibited robust circadian rhythms of bioluminescence (Fig. 1a), demonstrating the presence of an autonomous clock. We detected co-expression of insulin and core clock component mRNAs (Fig. 1b), strongly suggesting that the insulin-producing beta cells of islets are among the pancreatic cell-types possessing an intrinsic clock.
We next tested the hypothesis that an intrinsic circadian clock of the pancreas is important for glucose homeostasis. To generate mice with selective genetic ablation of clock function in the pancreas (Panc-Bmal1 −/− mice), we crossed Bmal1 conditional mice [6] with the Pdx1-Cre line [5]. As previously reported, Pdx1-Cre showed recombination activity throughout the pancreas and scattered activity in the duodenum, but no detectable activity in other peripheral tissues (ESM Fig. 1a). We detected no Cre activity in the SCN or in most of the brain, but did detect activity in the arcuate nucleus, ventromedial hypothalamus and dorsomedial hypothalamus (ESM Fig. 1b). Because these hypothalamic structures are well known to contribute to the neural regulation of glucose metabolism, this finding makes it essential to document a physiological defect in isolated pancreatic islets before concluding that a glucose homeostasis defect caused by Pdx1-Cre recombination is of pancreatic origin. In Panc-Bmal1 −/− mice, deletion of the conditional Bmal1 allele (ESM Fig. 2a) was consistent with the results of the indicator cross (ESM Fig. 1a). As expected, the protein brain, muscle Arnt-like 1 (BMAL1) was selectively lost from the pancreas (ESM Fig. 2b).
Unlike Bmal1 −/− mice lacking BMAL1 in all tissues [2], Panc-Bmal1 −/− mice exhibited normal locomotor activity, feeding behaviour, adiposity and body weight (ESM Fig. 3). Panc-Bmal1 −/− mice had an abnormality of glucose homeostasis essentially identical to that of Bmal1 −/− mice [2], characterised by severe glucose intolerance, normal responsiveness to insulin and defective insulin secretion in response to glucose (Fig. 1c–e). Panc-Bmal1 −/− mice exhibited intolerance to glucose throughout the circadian cycle, but a modest circadian modulation of glucose tolerance similar to that of controls persisted (Fig. 1f, g). Thus at least one clock outside the pancreas contributes to the circadian regulation of circulating glucose. The most likely candidate is the SCN clock, thought to modulate insulin secretion or sensitivity via autonomic efferents [1].
Pancreatic islets of Panc-Bmal1 −/− mice were indistinguishable in appearance from those of littermate Pdx1-Cre controls (Fig. 2a) and no significant difference was found between genotypes in the numbers of islets, mean size of islets or intensity of islet staining for insulin (Fig. 2b–d). Thus it is unlikely that the glucose intolerance and defective insulin secretion of Panc-Bmal1 −/− mice reflects a gross abnormality of islet development. Isolated, cultured islets from Panc-Bmal1 −/− mice secreted significantly less insulin in low and high glucose than islets from littermate Pdx1-Cre controls (Fig. 2e). There was no significant difference between genotypes in the total content of insulin per islet (Fig. 2f), indicating that the phenotype results from a defect in insulin secretion rather than insulin synthesis.

Discussion

Previous reports of clock gene expression in the pancreas [8] and rhythmic insulin release from isolated islets [9] suggested that a pancreatic clock regulates glucose homeostasis in vivo, a hypothesis our experiments have explicitly tested. Our results indicate that the Bmal1 gene, and probably circadian clock function, is required in the pancreas for normal insulin secretion and normal glucose homeostasis. The glucose intolerance of Panc-Bmal1 −/− mice is essentially identical to that of Bmal1 −/− mice [2], indicating that the loss of SCN clock function and consequent behavioural abnormalities in Bmal1 −/− mice contribute little, if anything to the glucose homeostasis phenotype. A similar, independent analysis has recently been reported [10].
We do not know the molecular mechanism underlying the defect in insulin release in Panc-Bmal1 −/− mice. The known role of clocks in regulating cell-autonomous gene expression suggests that a circadian clock within pancreatic beta cells regulates levels of one or more proteins of the glucose-sensing and/or insulin secretion pathways. In the absence of BMAL1, levels of one or more such proteins might fall below the usual circadian trough value, limiting insulin secretion. Our results provide evidence for a previously-unrecognised molecular regulator of pancreatic glucose-sensing and/or insulin secretion.

Acknowledgements

We thank D. Melton (Harvard University, Cambridge, MA, USA) for Pdx1-Cre mice, B. Lowell and D. Kong (Beth Israel Deaconess Medical Center, Boston, MA, USA) for advice and M. Liu (Department of Neurobiology, Harvard Medical School, Boston, MA, USA) for technical assistance. This work was supported by NIH grant R01 NS060860 (to C. J. Weitz), a Merck Fellowship of the Life Sciences Research Foundation (to K. A. Lamia), a Training Program in Sleep, Circadian and Respiratory Neurobiology Pre-Doctoral Fellowship T32 HL07901 (to L. A. Sadacca), and a Research Training in Digestive Diseases Fellowship T32 DK07191 (to A. S. deLemos). B. Blum is supported by an EMBO long-term post-doctoral fellowship.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243CrossRefPubMed La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243CrossRefPubMed
2.
Zurück zum Zitat Lamia KA, Storch K-F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177CrossRefPubMed Lamia KA, Storch K-F, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177CrossRefPubMed
3.
Zurück zum Zitat Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045CrossRefPubMed Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045CrossRefPubMed
4.
Zurück zum Zitat Rudic RD, McNamara P, Curtis AM et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377CrossRefPubMed Rudic RD, McNamara P, Curtis AM et al (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377CrossRefPubMed
5.
Zurück zum Zitat Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457PubMed Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457PubMed
6.
Zurück zum Zitat Storch K-F, Paz C, Signorovitch J et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–741CrossRefPubMed Storch K-F, Paz C, Signorovitch J et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130:730–741CrossRefPubMed
7.
Zurück zum Zitat Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ (2010) Identification of RACK1 and protein kinase C alpha as integral components of the mammalian circadian clock. Science 327:463–466CrossRefPubMed Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ (2010) Identification of RACK1 and protein kinase C alpha as integral components of the mammalian circadian clock. Science 327:463–466CrossRefPubMed
8.
Zurück zum Zitat Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96CrossRefPubMed Mühlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96CrossRefPubMed
9.
Zurück zum Zitat Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41:1085–1092CrossRefPubMed Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41:1085–1092CrossRefPubMed
10.
Zurück zum Zitat Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631CrossRefPubMed Marcheva B, Ramsey KM, Buhr ED et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631CrossRefPubMed
Metadaten
Titel
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
verfasst von
L. A. Sadacca
K. A. Lamia
A. S. deLemos
B. Blum
C. J. Weitz
Publikationsdatum
01.01.2011
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 1/2011
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1920-8

Weitere Artikel der Ausgabe 1/2011

Diabetologia 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.