Skip to main content
Erschienen in:

10.01.2021 | Non-Thematic Review

An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression

verfasst von: Aamir Ali Khan, Xinhui Liu, Xinlong Yan, Muhammad Tahir, Sakhawat Ali, Hua Huang

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.
Literatur
1.
Zurück zum Zitat Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 7–34.2. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 7–34.2.
2.
Zurück zum Zitat Street W. Cancer Facts & Figures 2019. American Cancer Society: Atlanta, GA, USA. 2019. (Accessed on 19-11-2019). Street W. Cancer Facts & Figures 2019. American Cancer Society: Atlanta, GA, USA. 2019. (Accessed on 19-11-2019).
3.
Zurück zum Zitat Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921.PubMedCrossRef Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921.PubMedCrossRef
4.
Zurück zum Zitat Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55(2), 74–108. Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55(2), 74–108.
5.
Zurück zum Zitat Teague, A., Lim, K. H., & Wang-Gillam, A. (2015). Advanced pancreatic adenocarcinoma: a review of current treatment strategies and developing therapies. Therapeutic Advances in Medical Oncology., 7(2), 68–84.PubMedPubMedCentralCrossRef Teague, A., Lim, K. H., & Wang-Gillam, A. (2015). Advanced pancreatic adenocarcinoma: a review of current treatment strategies and developing therapies. Therapeutic Advances in Medical Oncology., 7(2), 68–84.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Niess, H., Kleespies, A., Andrassy, J., Pratschke, S., Angele, M. K., Guba, M., Jauch, K. W., & Bruns, C. J. (2013). Pancreatic cancer in the elderly: guidelines and individualized therapy. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen., 84(4), 291–295.PubMed Niess, H., Kleespies, A., Andrassy, J., Pratschke, S., Angele, M. K., Guba, M., Jauch, K. W., & Bruns, C. J. (2013). Pancreatic cancer in the elderly: guidelines and individualized therapy. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen., 84(4), 291–295.PubMed
7.
Zurück zum Zitat Oberstein, P. E., & Olive, K. P. (2013). Pancreatic cancer: why is it so hard to treat? Therapeutic Advances in Gastroenterology, 6(4), 321–337.PubMedPubMedCentralCrossRef Oberstein, P. E., & Olive, K. P. (2013). Pancreatic cancer: why is it so hard to treat? Therapeutic Advances in Gastroenterology, 6(4), 321–337.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Neoptolemos, J. P., Stocken, D. D., Friess, H., Bassi, C., Dunn, J. A., Hickey, H., Beger, H., Fernandez-Cruz, L., Dervenis, C., Lacaine, F., & Falconi, M. (2004). A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. The New England Journal of Medicine, 350(12), 1200–1210.PubMedCrossRef Neoptolemos, J. P., Stocken, D. D., Friess, H., Bassi, C., Dunn, J. A., Hickey, H., Beger, H., Fernandez-Cruz, L., Dervenis, C., Lacaine, F., & Falconi, M. (2004). A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. The New England Journal of Medicine, 350(12), 1200–1210.PubMedCrossRef
9.
Zurück zum Zitat Bosetti, C., Lucenteforte, E., Silverman, D. T., Petersen, G., Bracci, P. M., Ji, B. T., Negri, E., Li, D., Risch, H. A., Olson, S. H., & Gallinger, S. (2011). Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Annals of Oncology, 23(7), 1880–1888.PubMedPubMedCentralCrossRef Bosetti, C., Lucenteforte, E., Silverman, D. T., Petersen, G., Bracci, P. M., Ji, B. T., Negri, E., Li, D., Risch, H. A., Olson, S. H., & Gallinger, S. (2011). Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Annals of Oncology, 23(7), 1880–1888.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Klein, A. P., Brune, K. A., Petersen, G. M., Goggins, M., Tersmette, A. C., Offerhaus, G. J., Griffin, C., Cameron, J. L., Yeo, C. J., Kern, S., & Hruban, R. H. (2004). Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Research, 64(7), 2634–2638.PubMedCrossRef Klein, A. P., Brune, K. A., Petersen, G. M., Goggins, M., Tersmette, A. C., Offerhaus, G. J., Griffin, C., Cameron, J. L., Yeo, C. J., Kern, S., & Hruban, R. H. (2004). Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Research, 64(7), 2634–2638.PubMedCrossRef
11.
Zurück zum Zitat Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., Real, F. X., Van Laethem, J. L., & Heinemann, V. (2015). Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology., 15(1), 8–18.PubMedCrossRef Hidalgo, M., Cascinu, S., Kleeff, J., Labianca, R., Löhr, J. M., Neoptolemos, J., Real, F. X., Van Laethem, J. L., & Heinemann, V. (2015). Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology., 15(1), 8–18.PubMedCrossRef
12.
Zurück zum Zitat Stewart BW, Wild CP (2019). World cancer report, 2014. Public Health. Stewart BW, Wild CP (2019). World cancer report, 2014. Public Health.
13.
Zurück zum Zitat De La Cruz, M. S., Young, A. P., & Ruffin, M. T. (2014). Diagnosis and management of pancreatic cancer. American Family Physician, 89(8), 626–632. De La Cruz, M. S., Young, A. P., & Ruffin, M. T. (2014). Diagnosis and management of pancreatic cancer. American Family Physician, 89(8), 626–632.
15.
Zurück zum Zitat Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.PubMedPubMedCentralCrossRef Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30.
17.
Zurück zum Zitat Mohammed, S., George Van Buren, I. I., & Fisher, W. E. (2014). Pancreatic cancer: advances in treatment. World journal of gastroenterology: WJG, 20(28), 9354.PubMedPubMedCentral Mohammed, S., George Van Buren, I. I., & Fisher, W. E. (2014). Pancreatic cancer: advances in treatment. World journal of gastroenterology: WJG, 20(28), 9354.PubMedPubMedCentral
18.
Zurück zum Zitat Haqq, J., Howells, L. M., Garcea, G., Metcalfe, M. S., Steward, W. P., & Dennison, A. R. (2014). Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. European Journal of Cancer, 50, 2570–2582.PubMedCrossRef Haqq, J., Howells, L. M., Garcea, G., Metcalfe, M. S., Steward, W. P., & Dennison, A. R. (2014). Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. European Journal of Cancer, 50, 2570–2582.PubMedCrossRef
19.
Zurück zum Zitat Ikenaga, N., Ohuchida, K., Mizumoto, K., Cui, L., Kayashima, T., Morimatsu, K., et al. (2010). CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology, 139, 1041–1051.PubMedCrossRef Ikenaga, N., Ohuchida, K., Mizumoto, K., Cui, L., Kayashima, T., Morimatsu, K., et al. (2010). CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology, 139, 1041–1051.PubMedCrossRef
20.
Zurück zum Zitat Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290.PubMedCrossRef Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290.PubMedCrossRef
21.
Zurück zum Zitat Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., et al. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120.PubMedCrossRef Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., et al. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120.PubMedCrossRef
22.
Zurück zum Zitat Özdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simson, T., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with diminished survival. Cancer Cell, 25, 719–734.PubMedPubMedCentralCrossRef Özdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simson, T., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with diminished survival. Cancer Cell, 25, 719–734.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747.PubMedPubMedCentralCrossRef Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., et al. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Puleo, F., Nicolle, R., Blum, Y., Cros, J., Marisa, L., Demetter, P., et al. (2018). Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology, 155, 1999–2013.PubMedCrossRef Puleo, F., Nicolle, R., Blum, Y., Cros, J., Marisa, L., Demetter, P., et al. (2018). Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology, 155, 1999–2013.PubMedCrossRef
25.
Zurück zum Zitat Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G., Hoadley, K. A., et al. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47, 1168–1178.PubMedPubMedCentralCrossRef Moffitt, R. A., Marayati, R., Flate, E. L., Volmar, K. E., Loeza, S. G., Hoadley, K. A., et al. (2015). Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47, 1168–1178.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Ye, C., Zheng, L., & Yuan, C. H. (2019). Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Zhonghua wai ke za zhi [Chinese Journal of Surgery]., 57(1), 10–15.PubMed Ye, C., Zheng, L., & Yuan, C. H. (2019). Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Zhonghua wai ke za zhi [Chinese Journal of Surgery]., 57(1), 10–15.PubMed
27.
Zurück zum Zitat Banerjee, K., Kumar, S., Ross, K. A., et al. (2018). Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 417, 35–46.PubMedCrossRef Banerjee, K., Kumar, S., Ross, K. A., et al. (2018). Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 417, 35–46.PubMedCrossRef
28.
Zurück zum Zitat Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine, 377, 2500–2501.PubMedPubMedCentralCrossRef Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine, 377, 2500–2501.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Laklai, H., Miroshnikova, Y. A., Pickup, M. W., et al. (2016). Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 22, 497.PubMedPubMedCentralCrossRef Laklai, H., Miroshnikova, Y. A., Pickup, M. W., et al. (2016). Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 22, 497.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. AACR: In.CrossRef Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. AACR: In.CrossRef
31.
Zurück zum Zitat Ferdek, P. E., & Jakubowska, M. A. (2017). Biology of pancreatic stellate cellsdmore than just pancreatic cancer. Pflügers Archiv - European Journal of Physiology, 469, 1039–1050.PubMedPubMedCentralCrossRef Ferdek, P. E., & Jakubowska, M. A. (2017). Biology of pancreatic stellate cellsdmore than just pancreatic cancer. Pflügers Archiv - European Journal of Physiology, 469, 1039–1050.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Apte, M., Pirola, R., & Wilson, J. (2012). Pancreatic stellate cells: a starring role in normal and diseased pancreas. Frontiers in Physiology, 3, 344.PubMedPubMedCentralCrossRef Apte, M., Pirola, R., & Wilson, J. (2012). Pancreatic stellate cells: a starring role in normal and diseased pancreas. Frontiers in Physiology, 3, 344.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Jiang, H., Hegde, S., & DeNardo, D. G. (2017). Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunology, Immunotherapy, 66, 1037–1048.PubMedCrossRef Jiang, H., Hegde, S., & DeNardo, D. G. (2017). Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunology, Immunotherapy, 66, 1037–1048.PubMedCrossRef
34.
Zurück zum Zitat Pothula, S. P., Xu, Z., Goldstein, D., Pirola, R. C., Wilson, J. S., & Apte, M. V. (2016). Key role of pancreatic stellate cells in pancreatic cancer. Cancer Letters, 381, 194–200.PubMedCrossRef Pothula, S. P., Xu, Z., Goldstein, D., Pirola, R. C., Wilson, J. S., & Apte, M. V. (2016). Key role of pancreatic stellate cells in pancreatic cancer. Cancer Letters, 381, 194–200.PubMedCrossRef
35.
Zurück zum Zitat Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A., & Verma, A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of Hematology & Oncology, 10, 76.CrossRef Von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A., & Verma, A. (2017). The role of stromal cancer-associated fibroblasts in pancreatic cancer. Journal of Hematology & Oncology, 10, 76.CrossRef
36.
Zurück zum Zitat Ohlund, D., Handly-Santana, A., Biffi, G., et al. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. The Journal of Experimental Medicine, 214, 579–596.PubMedPubMedCentralCrossRef Ohlund, D., Handly-Santana, A., Biffi, G., et al. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. The Journal of Experimental Medicine, 214, 579–596.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734.PubMedPubMedCentralCrossRef Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., et al. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ugel, S., De Sanctis, F., Mandruzzato, S., & Bronte, V. (2015). Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 125, 3365–3376.CrossRef Ugel, S., De Sanctis, F., Mandruzzato, S., & Bronte, V. (2015). Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 125, 3365–3376.CrossRef
39.
Zurück zum Zitat Porembka, M. R., Mitchem, J. B., Belt, B. A., et al. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloidderived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61, 1373–1385.PubMedCrossRef Porembka, M. R., Mitchem, J. B., Belt, B. A., et al. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloidderived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61, 1373–1385.PubMedCrossRef
40.
Zurück zum Zitat Stromnes, I. M., Brockenbrough, J. S., Izeradjene, K., et al. (2014). Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut., 63, 1769–1781.PubMedCrossRef Stromnes, I. M., Brockenbrough, J. S., Izeradjene, K., et al. (2014). Targeted depletion of an MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity. Gut., 63, 1769–1781.PubMedCrossRef
41.
Zurück zum Zitat Liu, G., Bi, Y., Shen, B., et al. (2014). SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1aedependent glycolysis. Cancer Research, 74, 727–737.PubMedCrossRef Liu, G., Bi, Y., Shen, B., et al. (2014). SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1aedependent glycolysis. Cancer Research, 74, 727–737.PubMedCrossRef
42.
Zurück zum Zitat Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D., & Hingorani, S. R. (2017). T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunology Research, 5, 978–991.PubMedPubMedCentralCrossRef Stromnes, I. M., Hulbert, A., Pierce, R. H., Greenberg, P. D., & Hingorani, S. R. (2017). T-cell localization, activation, and clonal expansion in human pancreatic ductal adenocarcinoma. Cancer Immunology Research, 5, 978–991.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Shi, C., Daniels, J. A., & Hruban, R. H. (2008). Molecular characterization of pancreatic neoplasms. Advances in Anatomic Pathology, 15(4), 185–195.PubMedCrossRef Shi, C., Daniels, J. A., & Hruban, R. H. (2008). Molecular characterization of pancreatic neoplasms. Advances in Anatomic Pathology, 15(4), 185–195.PubMedCrossRef
46.
Zurück zum Zitat Solomon, S., Das, S., Brand, R., & Whitcomb, D. C. (2012). Inherited pancreatic cancer syndromes. Cancer Journal, 18(6), 485491.CrossRef Solomon, S., Das, S., Brand, R., & Whitcomb, D. C. (2012). Inherited pancreatic cancer syndromes. Cancer Journal, 18(6), 485491.CrossRef
47.
Zurück zum Zitat Hahn, S. A., Greenhalf, B., Ellis, I., Sina-Frey, M., Rieder, H., Korte, B., Gerdes, B., Kress, R., Ziegler, A., Raeburn, J. A., & Campra, D. (2003). BRCA2 germline mutations in familial pancreatic carcinoma. Journal of the National Cancer Institute, 95(3), 214–221.PubMedCrossRef Hahn, S. A., Greenhalf, B., Ellis, I., Sina-Frey, M., Rieder, H., Korte, B., Gerdes, B., Kress, R., Ziegler, A., Raeburn, J. A., & Campra, D. (2003). BRCA2 germline mutations in familial pancreatic carcinoma. Journal of the National Cancer Institute, 95(3), 214–221.PubMedCrossRef
48.
Zurück zum Zitat Couch, F. J., Johnson, M. R., Rabe, K. G., Brune, K., De Andrade, M., Goggins, M., Rothenmund, H., Gallinger, S., Klein, A., Petersen, G. M., & Hruban, R. H. (2007). The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers., 16(2), 342–346.CrossRef Couch, F. J., Johnson, M. R., Rabe, K. G., Brune, K., De Andrade, M., Goggins, M., Rothenmund, H., Gallinger, S., Klein, A., Petersen, G. M., & Hruban, R. H. (2007). The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiology and Prevention Biomarkers., 16(2), 342–346.CrossRef
49.
Zurück zum Zitat Murphy, K. M., Brune, K. A., Griffin, C., Sollenberger, J. E., Petersen, G. M., Bansal, R., Hruban, R. H., & Kern, S. E. (2002). Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Research, 62(13), 3789–3793.PubMed Murphy, K. M., Brune, K. A., Griffin, C., Sollenberger, J. E., Petersen, G. M., Bansal, R., Hruban, R. H., & Kern, S. E. (2002). Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Research, 62(13), 3789–3793.PubMed
50.
Zurück zum Zitat Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., Lin, J. C., Palmisano, E., Brune, K., Jaffee, E. M., & Iacobuzio-Donahue, C. A. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science., 324(5924), 217.PubMedPubMedCentralCrossRef Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., Lin, J. C., Palmisano, E., Brune, K., Jaffee, E. M., & Iacobuzio-Donahue, C. A. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science., 324(5924), 217.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Tischkowitz, M. D., Sabbaghian, N., Hamel, N., Borgida, A., Rosner, C., Taherian, N., Srivastava, A., Holter, S., Rothenmund, H., Ghadirian, P., & Foulkes, W. D. (2009). Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology., 137(3), 1183–1186.PubMedCrossRef Tischkowitz, M. D., Sabbaghian, N., Hamel, N., Borgida, A., Rosner, C., Taherian, N., Srivastava, A., Holter, S., Rothenmund, H., Ghadirian, P., & Foulkes, W. D. (2009). Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology., 137(3), 1183–1186.PubMedCrossRef
52.
Zurück zum Zitat Slater, E. P., Langer, P., Niemczyk, E., Strauch, K., Butler, J., Habbe, N., Neoptolemos, J. P., Greenhalf, W., & Bartsch, D. K. (2010). PALB2 mutations in European familial pancreatic cancer families. Clinical Genetics, 78(5), 490–494.PubMedCrossRef Slater, E. P., Langer, P., Niemczyk, E., Strauch, K., Butler, J., Habbe, N., Neoptolemos, J. P., Greenhalf, W., & Bartsch, D. K. (2010). PALB2 mutations in European familial pancreatic cancer families. Clinical Genetics, 78(5), 490–494.PubMedCrossRef
53.
Zurück zum Zitat Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.PubMedCrossRef Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.PubMedCrossRef
54.
Zurück zum Zitat Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed
55.
Zurück zum Zitat Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.PubMedPubMedCentralCrossRef Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., & Park, Y. S. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10(10), 1993–1999.PubMedCrossRef Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., & Park, Y. S. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10(10), 1993–1999.PubMedCrossRef
57.
Zurück zum Zitat De Bosscher, K., Hill, C. S., & Nicolas, F. J. (2004). Molecular and functional consequences of SMAD4 c-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379, 209–216.PubMedPubMedCentralCrossRef De Bosscher, K., Hill, C. S., & Nicolas, F. J. (2004). Molecular and functional consequences of SMAD4 c-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379, 209–216.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., et al. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15, 4674–4679.PubMedPubMedCentralCrossRef Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., et al. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15, 4674–4679.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., et al. (1997). Abrogation of the RB/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57, 3126–3130.PubMed
60.
Zurück zum Zitat Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16, 431–439.PubMedCrossRef Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16, 431–439.PubMedCrossRef
61.
Zurück zum Zitat Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.PubMedCrossRef Hwang, R. F., Gordon, E. M., Anderson, W. F., & Parekh, D. (1998). Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type p53 gene. Surgery, 124, 143–150.PubMedCrossRef
62.
Zurück zum Zitat Kern, S. E., Pietenpol, J. A., Thiagalingam, S., Seymour, A., Kinzler, K. W., & Vogelstein, B. (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science, 256, 827–830.PubMedCrossRef Kern, S. E., Pietenpol, J. A., Thiagalingam, S., Seymour, A., Kinzler, K. W., & Vogelstein, B. (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science, 256, 827–830.PubMedCrossRef
63.
Zurück zum Zitat Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P. A., Stratton, M. R., et al. (2004). Thecosmic (catalogue of somatic mutations in cancer) database and website. British Journal of Cancer, 91, 355–358.PubMedPubMedCentralCrossRef Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P. A., Stratton, M. R., et al. (2004). Thecosmic (catalogue of somatic mutations in cancer) database and website. British Journal of Cancer, 91, 355–358.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., et al. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10, 1993–1999.PubMedCrossRef Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., Jang, H. L., Yi, J. H., Baek, K. K., Park, S. H., et al. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular Cancer Therapeutics, 10, 1993–1999.PubMedCrossRef
65.
Zurück zum Zitat Fernandez-Medarde, E., & Santos. (2011). Ras in cancer and developmental diseases. Genes & Cancer, 2, 344–358.CrossRef Fernandez-Medarde, E., & Santos. (2011). Ras in cancer and developmental diseases. Genes & Cancer, 2, 344–358.CrossRef
66.
67.
Zurück zum Zitat Tites, E. C. S., & Chandran, K. S. R. (2009). A systems perspective of ras signaling in cancer. Clinical Cancer Research, 15, 1510–1513.CrossRef Tites, E. C. S., & Chandran, K. S. R. (2009). A systems perspective of ras signaling in cancer. Clinical Cancer Research, 15, 1510–1513.CrossRef
68.
Zurück zum Zitat Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Menzies, A., Teague, J. W., Campbell, P. J., Stratton, M. R., & Futreal, P. A. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research, 39, D945–D950.PubMedCrossRef Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Menzies, A., Teague, J. W., Campbell, P. J., Stratton, M. R., & Futreal, P. A. (2011). COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research, 39, D945–D950.PubMedCrossRef
69.
Zurück zum Zitat Jones, S., Zhang, X., Parsons, D. W., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science., 321(5897), 1801–1806.PubMedPubMedCentralCrossRef Jones, S., Zhang, X., Parsons, D. W., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science., 321(5897), 1801–1806.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Hruban, R. H., van Mansfeld, A. D., Offerhaus, G. J., et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. The American Journal of Pathology, 143(2), 545–554.PubMedPubMedCentral Hruban, R. H., van Mansfeld, A. D., Offerhaus, G. J., et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas: a study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. The American Journal of Pathology, 143(2), 545–554.PubMedPubMedCentral
71.
Zurück zum Zitat Caldas, S. A., Hahn, R. H., Hruban, M. S., & Redston, C. J. (1994). Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Research, 54, 3568–3573.PubMed Caldas, S. A., Hahn, R. H., Hruban, M. S., & Redston, C. J. (1994). Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Research, 54, 3568–3573.PubMed
72.
Zurück zum Zitat Kim, J., Reber, H. A., Dry, S. M., Elashoff, D., Chen, S. L., Umetani, N., Kitago, M., Hines, O. J., Kazanjian, K. K., Hiramatsu, S., Bilchik, A. J., Yong, S., Shoup, M., & Hoon, D. S. (2006). Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut, 55, 1598–1605.PubMedPubMedCentralCrossRef Kim, J., Reber, H. A., Dry, S. M., Elashoff, D., Chen, S. L., Umetani, N., Kitago, M., Hines, O. J., Kazanjian, K. K., Hiramatsu, S., Bilchik, A. J., Yong, S., Shoup, M., & Hoon, D. S. (2006). Unfavourable prognosis associated with K-ras gene mutation in pancreatic cancer surgical margins. Gut, 55, 1598–1605.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.PubMedCrossRef Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.PubMedCrossRef
74.
Zurück zum Zitat RM, Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., De Pinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496, 101–105.CrossRef RM, Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., De Pinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496, 101–105.CrossRef
75.
Zurück zum Zitat Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.PubMedCrossRef Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., Evans, J. D., Campbell, F., Lemoine, N., & Neoptolemos, J. P. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53 p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89, 469–474.PubMedCrossRef
76.
Zurück zum Zitat Immervoll, H., Hoem, D., Kugarajh, K., Steine, S. J., & Molven, A. (2006). Molecular analysis of the EGFR-RAS-RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes. Virchows Archiv, 448, 788–796.PubMedCrossRef Immervoll, H., Hoem, D., Kugarajh, K., Steine, S. J., & Molven, A. (2006). Molecular analysis of the EGFR-RAS-RAF pathway in pancreatic ductal adenocarcinomas: lack of mutations in the BRAF and EGFR genes. Virchows Archiv, 448, 788–796.PubMedCrossRef
77.
Zurück zum Zitat Chen, H., Tu, H., Meng, Z. Q., Chen, Z., Wang, P., & Liu, L. M. (2010). K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. European Journal of Surgical Oncology, 36, 657–662.PubMedCrossRef Chen, H., Tu, H., Meng, Z. Q., Chen, Z., Wang, P., & Liu, L. M. (2010). K-ras mutational status predicts poor prognosis in unresectable pancreatic cancer. European Journal of Surgical Oncology, 36, 657–662.PubMedCrossRef
78.
Zurück zum Zitat Reza, J., Almodovar, A. J., Srivastava, M., Veldhuis, P. P., Patel, S., Fanaian, N. I., Zhu, X., Litherland, S. A., & Arnoletti, J. P. (2019). K-RAS mutant gene found in pancreatic juice activated chromatin from peri-ampullary adenocarcinomas. Epigenetics Insights., 12, 2516865719828348.PubMedPubMedCentralCrossRef Reza, J., Almodovar, A. J., Srivastava, M., Veldhuis, P. P., Patel, S., Fanaian, N. I., Zhu, X., Litherland, S. A., & Arnoletti, J. P. (2019). K-RAS mutant gene found in pancreatic juice activated chromatin from peri-ampullary adenocarcinomas. Epigenetics Insights., 12, 2516865719828348.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Glorieux, C., & Huang, P. (2019). Regulation of CD137 expression through K-Ras signalling in pancreatic cancer cells. Cancer Communications, 39(1), 41.PubMedPubMedCentralCrossRef Glorieux, C., & Huang, P. (2019). Regulation of CD137 expression through K-Ras signalling in pancreatic cancer cells. Cancer Communications, 39(1), 41.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Nishizawa, N., Kumamoto, Y., Katoh, H., Ushiku, H., Yokoi, K., Tanaka, T., Ishii, S., Igarashi, K., Tajima, H., Kaizu, T., & Yoshida, T. (2019). Dissected peripancreatic tissue margin is a critical prognostic factor and is associated with a K-ras gene mutation in pancreatic ductal adenocarcinoma. Oncology Letters, 17(2), 2141–2150.PubMed Nishizawa, N., Kumamoto, Y., Katoh, H., Ushiku, H., Yokoi, K., Tanaka, T., Ishii, S., Igarashi, K., Tajima, H., Kaizu, T., & Yoshida, T. (2019). Dissected peripancreatic tissue margin is a critical prognostic factor and is associated with a K-ras gene mutation in pancreatic ductal adenocarcinoma. Oncology Letters, 17(2), 2141–2150.PubMed
81.
Zurück zum Zitat Adjei, A. A. (2001). Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute, 93, 1062–1074.PubMedCrossRef Adjei, A. A. (2001). Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute, 93, 1062–1074.PubMedCrossRef
82.
Zurück zum Zitat Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., Rosato, E. F., Haller, D. G., Stevenson, J. P., Smith, D., Pramanik, B., Tepper, J., Tanaka, W. K., Morrison, B., Deutsch, P., Gupta, A. K., Muschel, R. J., McKenna, W. G., Bernhard, E. J., & Hahn, S. M. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10, 5447–5454.PubMedCrossRef Martin, N. E., Brunner, T. B., Kiel, K. D., DeLaney, T. F., Regine, W. F., Mohiuddin, M., Rosato, E. F., Haller, D. G., Stevenson, J. P., Smith, D., Pramanik, B., Tepper, J., Tanaka, W. K., Morrison, B., Deutsch, P., Gupta, A. K., Muschel, R. J., McKenna, W. G., Bernhard, E. J., & Hahn, S. M. (2004). A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clinical Cancer Research, 10, 5447–5454.PubMedCrossRef
83.
Zurück zum Zitat Chao, M. W., Chang, L. H., Tu, H. J., Chang, C. D., Lai, M. J., Chen, Y. Y., Liou, J. P., Teng, C. M., & Pan, S. L. (2019). Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clinical Epigenetics, 11(1), 85.PubMedPubMedCentralCrossRef Chao, M. W., Chang, L. H., Tu, H. J., Chang, C. D., Lai, M. J., Chen, Y. Y., Liou, J. P., Teng, C. M., & Pan, S. L. (2019). Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clinical Epigenetics, 11(1), 85.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Dent, P., Booth, L., Roberts, J. L., Liu, J., Poklepovic, A., Lalani, A. S., Tuveson, D., Martinez, J., & Hancock, J. F. (2019). Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene., 38(30), 5890–5904.PubMedPubMedCentralCrossRef Dent, P., Booth, L., Roberts, J. L., Liu, J., Poklepovic, A., Lalani, A. S., Tuveson, D., Martinez, J., & Hancock, J. F. (2019). Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene., 38(30), 5890–5904.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Jay, G., Khoury, G., DeLeo, A. B., Dippold, W. G., & Old, L. J. (1981). p53 transformation-related protein: detection of an associated phosphotransferase activity. Proceedings of the National Academy of Sciences, 78(5), 2932–2936.CrossRef Jay, G., Khoury, G., DeLeo, A. B., Dippold, W. G., & Old, L. J. (1981). p53 transformation-related protein: detection of an associated phosphotransferase activity. Proceedings of the National Academy of Sciences, 78(5), 2932–2936.CrossRef
87.
Zurück zum Zitat Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death and Differentiation, 10(4), 431.PubMedCrossRef Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death and Differentiation, 10(4), 431.PubMedCrossRef
88.
Zurück zum Zitat Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature., 408(6810), 307.PubMedCrossRef Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature., 408(6810), 307.PubMedCrossRef
89.
Zurück zum Zitat El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., & Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature Genetics, 1(1), 45.PubMedCrossRef El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., & Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature Genetics, 1(1), 45.PubMedCrossRef
90.
Zurück zum Zitat Li, M., He, Y., Dubois, W., Wu, X., Shi, J., & Huang, J. (2012). Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Molecular Cell, 46(1), 30–42.PubMedPubMedCentralCrossRef Li, M., He, Y., Dubois, W., Wu, X., Shi, J., & Huang, J. (2012). Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Molecular Cell, 46(1), 30–42.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Waldman, T., Kinzler, K. W., & Vogelstein, B. (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Research, 55(22), 5187–5190.PubMed Waldman, T., Kinzler, K. W., & Vogelstein, B. (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Research, 55(22), 5187–5190.PubMed
92.
Zurück zum Zitat Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature., 389(6648), 300.PubMedCrossRef Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature., 389(6648), 300.PubMedCrossRef
93.
Zurück zum Zitat Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr., C. A., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature., 356(6366), 215.PubMedCrossRef Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr., C. A., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature., 356(6366), 215.PubMedCrossRef
94.
Zurück zum Zitat Ruggeri, B., Zhang, S., Caamano, J., et al. (1992). Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor suppressor genes. Oncogene, 7(8), 1503–1511.PubMed Ruggeri, B., Zhang, S., Caamano, J., et al. (1992). Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor suppressor genes. Oncogene, 7(8), 1503–1511.PubMed
95.
Zurück zum Zitat Birch, J. M., Alston, R. D., McNally, R., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.PubMedCrossRef Birch, J. M., Alston, R. D., McNally, R., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.PubMedCrossRef
96.
Zurück zum Zitat Casey, G., Yamanaka, Y., Friess, H., et al. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.PubMedCrossRef Casey, G., Yamanaka, Y., Friess, H., et al. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.PubMedCrossRef
97.
Zurück zum Zitat DiGiuseppe, J. A., Hruban, R. H., Goodman, S. N., Polak, M., Van Den Berg, F. M., Allison, D. C., Cameron, J. L., Johan, A., & Offerhaus, G. (1994). Overexpression of p53 protein in adenocarcinoma of the pancreas. American Journal of Clinical Pathology, 101(6), 684–688.PubMedCrossRef DiGiuseppe, J. A., Hruban, R. H., Goodman, S. N., Polak, M., Van Den Berg, F. M., Allison, D. C., Cameron, J. L., Johan, A., & Offerhaus, G. (1994). Overexpression of p53 protein in adenocarcinoma of the pancreas. American Journal of Clinical Pathology, 101(6), 684–688.PubMedCrossRef
98.
Zurück zum Zitat Redston, M. S., Caldas, C., Seymour, A. B., Hruban, R. H., Da Costa, L., Yeo, C. J., & Kern, S. E. (1994). p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Research, 54(11), 3025–3033.PubMed Redston, M. S., Caldas, C., Seymour, A. B., Hruban, R. H., Da Costa, L., Yeo, C. J., & Kern, S. E. (1994). p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Research, 54(11), 3025–3033.PubMed
99.
Zurück zum Zitat Casey, G., Yamanaka, Y., Friess, H., Kobrin, M. S., Lopez, M. E., Buchler, M., Beger, H. G., & Korc, M. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.PubMedCrossRef Casey, G., Yamanaka, Y., Friess, H., Kobrin, M. S., Lopez, M. E., Buchler, M., Beger, H. G., & Korc, M. (1993). p53 mutations are common in pancreatic cancer and are absent in chronic pancreatitis. Cancer Letters, 69(3), 151–160.PubMedCrossRef
100.
Zurück zum Zitat Izetti, P., Hautefeuille, A., Abujamra, A. L., et al. (2014). PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Investigational New Drugs, 32(5), 783–794.PubMedCrossRef Izetti, P., Hautefeuille, A., Abujamra, A. L., et al. (2014). PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Investigational New Drugs, 32(5), 783–794.PubMedCrossRef
101.
Zurück zum Zitat Azmi, A. S., Philip, P. A., Wang, Z., et al. (2010). Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Current Cancer Drug Targets, 10(3), 319.PubMedPubMedCentralCrossRef Azmi, A. S., Philip, P. A., Wang, Z., et al. (2010). Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Current Cancer Drug Targets, 10(3), 319.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Mello, S. S., Valente, L. J., Raj, N., Seoane, J. A., Flowers, B. M., McClendon, J., Bieging-Rolett, K. T., Lee, J., Ivanochko, D., Kozak, M. M., & Chang, D. T. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell, 32(4), 460–473.PubMedPubMedCentralCrossRef Mello, S. S., Valente, L. J., Raj, N., Seoane, J. A., Flowers, B. M., McClendon, J., Bieging-Rolett, K. T., Lee, J., Ivanochko, D., Kozak, M. M., & Chang, D. T. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell, 32(4), 460–473.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Delma, C. R., Thirugnanasambandan, S., Srinivasan, G. P., Raviprakash, N., Manna, S. K., Natarajan, M., & Aravindan, N. (2019). Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53–NFκB crosstalk. Phytochemistry., 167, 112078.PubMedCrossRef Delma, C. R., Thirugnanasambandan, S., Srinivasan, G. P., Raviprakash, N., Manna, S. K., Natarajan, M., & Aravindan, N. (2019). Fucoidan from marine brown algae attenuates pancreatic cancer progression by regulating p53–NFκB crosstalk. Phytochemistry., 167, 112078.PubMedCrossRef
104.
Zurück zum Zitat Cheng, J., Okolotowicz, K. J., Ryan, D., Mose, E., Lowy, A. M., & Cashman, J. R. (2019). Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. American Journal of Cancer Research, 9(2), 390.PubMedPubMedCentral Cheng, J., Okolotowicz, K. J., Ryan, D., Mose, E., Lowy, A. M., & Cashman, J. R. (2019). Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. American Journal of Cancer Research, 9(2), 390.PubMedPubMedCentral
105.
Zurück zum Zitat Long, J., Liu, Z., & Hui, L. (2019). Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complementary and Alternative Medicine, 19(1), 133.PubMedPubMedCentralCrossRef Long, J., Liu, Z., & Hui, L. (2019). Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complementary and Alternative Medicine, 19(1), 133.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Stott, F. J., Bates, S., James, M. C., et al. (1998). The alternative product from the human CDKN2a locus, p14 (ARF), participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal, 17, 5001–5014.PubMedPubMedCentralCrossRef Stott, F. J., Bates, S., James, M. C., et al. (1998). The alternative product from the human CDKN2a locus, p14 (ARF), participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal, 17, 5001–5014.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366(6456), 704–707.PubMedCrossRef Serrano, M., Hannon, G. J., & Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 366(6456), 704–707.PubMedCrossRef
108.
Zurück zum Zitat Liggett Jr., W. H., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. Journal of Clinical Oncology, 16(3), 1197–1206.PubMedCrossRef Liggett Jr., W. H., & Sidransky, D. (1998). Role of the p16 tumor suppressor gene in cancer. Journal of Clinical Oncology, 16(3), 1197–1206.PubMedCrossRef
109.
Zurück zum Zitat Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., & Peters, G. (1998). The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal., 17(17), 5001–5014.PubMedPubMedCentralCrossRef Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., & Peters, G. (1998). The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. The EMBO Journal., 17(17), 5001–5014.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.PubMedPubMedCentralCrossRef Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Gerdes, B., Ramaswamy, A., Kersting, M., Ernst, M., Lang, S., Schuermann, M., Wild, A., & Bartsch, D. K. (2001). p16INK4a alterations in chronic pancreatitis—indicator for high-risk lesions for pancreatic cancer. Surgery., 129(4), 490–497.PubMedCrossRef Gerdes, B., Ramaswamy, A., Kersting, M., Ernst, M., Lang, S., Schuermann, M., Wild, A., & Bartsch, D. K. (2001). p16INK4a alterations in chronic pancreatitis—indicator for high-risk lesions for pancreatic cancer. Surgery., 129(4), 490–497.PubMedCrossRef
112.
Zurück zum Zitat Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., & Baylin, S. B. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57(15), 3126–3130.PubMed Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., Moskaluk, C. A., Hahn, S. A., Schwarte-Waldhoff, I., Schmiegel, W., & Baylin, S. B. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57(15), 3126–3130.PubMed
113.
Zurück zum Zitat Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16(2), 431.PubMedCrossRef Chen, J., Li, D., Killary, A. M., Sen, S., Amos, C. I., Evans, D. B., Abbruzzese, J. L., & Frazier, M. L. (2009). Polymorphisms of p16, p27, p73, and MDM2 modulate response and survival of pancreatic cancer patients treated with preoperative chemoradiation. Annals of Surgical Oncology, 16(2), 431.PubMedCrossRef
114.
Zurück zum Zitat Attri, J., Srinivasan, R., Majumdar, S., Radotra, B. D., & Wig, J. (2005). Alterations of tumor suppressor gene p16 INK4a in pancreatic ductal carcinoma. BMC Gastroenterology, 5(1), 22.PubMedPubMedCentralCrossRef Attri, J., Srinivasan, R., Majumdar, S., Radotra, B. D., & Wig, J. (2005). Alterations of tumor suppressor gene p16 INK4a in pancreatic ductal carcinoma. BMC Gastroenterology, 5(1), 22.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M., & Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas., 29(3), 193–203.PubMedCrossRef Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M., & Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas., 29(3), 193–203.PubMedCrossRef
116.
Zurück zum Zitat Klump, B., Hsieh, C. J., Nehls, O., Dette, S., Holzmann, K., Kiesslich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., & Gregor, M. (2003). Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. British Journal of Cancer, 88(2), 217.PubMedPubMedCentralCrossRef Klump, B., Hsieh, C. J., Nehls, O., Dette, S., Holzmann, K., Kiesslich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., & Gregor, M. (2003). Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions. British Journal of Cancer, 88(2), 217.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.PubMedPubMedCentralCrossRef Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.PubMedPubMedCentralCrossRef Heilmann, A. M., Perera, R. M., Ecker, V., Nicolay, B. N., Bardeesy, N., Benes, C. H., & Dyson, N. J. (2014). CDK4/6 and IGF1 receptor inhibitors synergize to suppress the growth of p16INK4A-deficient pancreatic cancers. Cancer Research, 74(14), 3947–3958.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Al Baghdadi, T., Halabi, S., Garrett-Mayer, E., Mangat, P. K., Ahn, E. R., Sahai, V., Alvarez, R. H., Kim, E. S., Yost, K. J., Rygiel, A. L., & Antonelli, K. R. (2019). Palbociclib in patients with pancreatic and biliary cancer with CDKN2A alterations: results from the Targeted Agent and Profiling Utilization Registry Study. JCO Precision Oncology, 14. Al Baghdadi, T., Halabi, S., Garrett-Mayer, E., Mangat, P. K., Ahn, E. R., Sahai, V., Alvarez, R. H., Kim, E. S., Yost, K. J., Rygiel, A. L., & Antonelli, K. R. (2019). Palbociclib in patients with pancreatic and biliary cancer with CDKN2A alterations: results from the Targeted Agent and Profiling Utilization Registry Study. JCO Precision Oncology, 14.
120.
Zurück zum Zitat Hahn, S. A., Schutte, M., Hoque, A. S., Moskaluk, C. A., Da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., & Kern, S. E. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science., 271(5247), 350–353.PubMedCrossRef Hahn, S. A., Schutte, M., Hoque, A. S., Moskaluk, C. A., Da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., & Kern, S. E. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science., 271(5247), 350–353.PubMedCrossRef
121.
Zurück zum Zitat Massagué, J. (1996). TGFβ signaling: receptors, transducers, and Mad proteins. Cell., 85(7), 947–950.PubMedCrossRef Massagué, J. (1996). TGFβ signaling: receptors, transducers, and Mad proteins. Cell., 85(7), 947–950.PubMedCrossRef
122.
Zurück zum Zitat Saiki, Y., & Horii, A. (2014). Molecular pathology of pancreatic cancer. Pathology International, 64(1), 10–19.PubMedCrossRef Saiki, Y., & Horii, A. (2014). Molecular pathology of pancreatic cancer. Pathology International, 64(1), 10–19.PubMedCrossRef
123.
Zurück zum Zitat Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-β signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117.PubMedCrossRef Derynck, R., Akhurst, R. J., & Balmain, A. (2001). TGF-β signaling in tumor suppression and cancer progression. Nature Genetics, 29(2), 117.PubMedCrossRef
124.
Zurück zum Zitat Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMedCrossRef Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMedCrossRef
125.
Zurück zum Zitat Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342.PubMedCrossRef Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342.PubMedCrossRef
126.
Zurück zum Zitat Lecanda, J., Ganapathy, V., D’Aquino-Ardalan, C., Evans, B., Cadacio, C., Ayala, A., & Gold, L. I. (2009). TGFβ prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle, 8(5), 742–756.PubMedCrossRef Lecanda, J., Ganapathy, V., D’Aquino-Ardalan, C., Evans, B., Cadacio, C., Ayala, A., & Gold, L. I. (2009). TGFβ prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle, 8(5), 742–756.PubMedCrossRef
127.
Zurück zum Zitat Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell., 103(2), 295–309.PubMedCrossRef Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell., 103(2), 295–309.PubMedCrossRef
128.
Zurück zum Zitat De Bosscher, K., Hill, C. S., & Nicolás, F. J. (2004). Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379(1), 209–216.PubMedPubMedCentralCrossRef De Bosscher, K., Hill, C. S., & Nicolás, F. J. (2004). Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. The Biochemical Journal, 379(1), 209–216.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.PubMedPubMedCentralCrossRef Blackford, A., Serrano, O. K., Wolfgang, C. L., Parmigiani, G., Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Eshleman, J. R., & Goggins, M. (2009). SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clinical Cancer Research, 15(14), 4674–4679.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas., 41(4), 541–546.PubMedCrossRef Singh, P., Srinivasan, R., & Wig, J. D. (2012). SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas., 41(4), 541–546.PubMedCrossRef
131.
Zurück zum Zitat Hayashi, H., Kohno, T., Ueno, H., Hiraoka, N., Kondo, S., Saito, M., Shimada, Y., Ichikawa, H., Kato, M., Shibata, T., et al. (2017). Utility of assessing the number of mutated KRAS, CDKN2A, Tp53, and SMAD4 genes using a targeted deep sequencing assay as a prognostic biomarker for pancreatic cancer. Pancreas, 46, 335–340.PubMedCrossRef Hayashi, H., Kohno, T., Ueno, H., Hiraoka, N., Kondo, S., Saito, M., Shimada, Y., Ichikawa, H., Kato, M., Shibata, T., et al. (2017). Utility of assessing the number of mutated KRAS, CDKN2A, Tp53, and SMAD4 genes using a targeted deep sequencing assay as a prognostic biomarker for pancreatic cancer. Pancreas, 46, 335–340.PubMedCrossRef
132.
Zurück zum Zitat Wang, J. D., Jin, K., Chen, X. Y., Lv, J. Q., & Ji, K. W. (2017). Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: a systematic review and meta-analysis. Oncotarget., 8(10), 16704.PubMedCrossRef Wang, J. D., Jin, K., Chen, X. Y., Lv, J. Q., & Ji, K. W. (2017). Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: a systematic review and meta-analysis. Oncotarget., 8(10), 16704.PubMedCrossRef
133.
Zurück zum Zitat Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochemical and Biophysical Research Communications, 406(4), 552–557.PubMedCrossRef Hao, J., Zhang, S., Zhou, Y., Liu, C., Hu, X., & Shao, C. (2011). MicroRNA 421 suppresses DPC4/Smad4 in pancreatic cancer. Biochemical and Biophysical Research Communications, 406(4), 552–557.PubMedCrossRef
134.
Zurück zum Zitat Wang, F., Xia, X., Yang, C., Shen, J., Mai, J., Kim, H. C., Kirui, D., Kang, Y. A., Fleming, J. B., Koay, E. J., & Mitra, S. (2018). SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clinical Cancer Research, 24(13), 3176–3185.PubMedPubMedCentralCrossRef Wang, F., Xia, X., Yang, C., Shen, J., Mai, J., Kim, H. C., Kirui, D., Kang, Y. A., Fleming, J. B., Koay, E. J., & Mitra, S. (2018). SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clinical Cancer Research, 24(13), 3176–3185.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Yamada, S., Fujii, T., Shimoyama, Y., Kanda, M., Nakayama, G., Sugimoto, H., Koike, M., Nomoto, S., Fujiwara, M., Nakao, A., & Kodera, Y. (2015). SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer. Pancreas., 44(4), 660–664.PubMedCrossRef Yamada, S., Fujii, T., Shimoyama, Y., Kanda, M., Nakayama, G., Sugimoto, H., Koike, M., Nomoto, S., Fujiwara, M., Nakao, A., & Kodera, Y. (2015). SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer. Pancreas., 44(4), 660–664.PubMedCrossRef
136.
Zurück zum Zitat Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. Clinical Cancer Research, 18(16), 4266–4276.PubMedPubMedCentralCrossRef Feig, C., Gopinathan, A., Neesse, A., Chan, D. S., Cook, N., & Tuveson, D. A. (2012). The pancreas cancer microenvironment. Clinical Cancer Research, 18(16), 4266–4276.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural inva-sion and associated pain in pancreatic cancer. Nature Reviews. Cancer, 11(10), 695–707.PubMedCrossRef Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural inva-sion and associated pain in pancreatic cancer. Nature Reviews. Cancer, 11(10), 695–707.PubMedCrossRef
139.
Zurück zum Zitat Feldmann, G., Beaty, R., Hruban, R. H., & Maitra, A. (2007). Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pan-creat Surg, 14(3), 224–232.CrossRef Feldmann, G., Beaty, R., Hruban, R. H., & Maitra, A. (2007). Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pan-creat Surg, 14(3), 224–232.CrossRef
140.
Zurück zum Zitat Bryant, K. L., Mancias, J. D., Kimmelman, A. C., & Der, C. J. (2014). KRAS: feed-ing pancreatic cancer proliferation. Trends in Biochemical Sciences, 39(2), 91–100.PubMedPubMedCentralCrossRef Bryant, K. L., Mancias, J. D., Kimmelman, A. C., & Der, C. J. (2014). KRAS: feed-ing pancreatic cancer proliferation. Trends in Biochemical Sciences, 39(2), 91–100.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G., & Chiaradonna, F. (2011). Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 7, 523.PubMedPubMedCentralCrossRef Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G., & Chiaradonna, F. (2011). Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology, 7, 523.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Dell’ Antone, P. (2012). Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Medical Hypotheses, 79(3), 388–392.PubMedCrossRef Dell’ Antone, P. (2012). Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Medical Hypotheses, 79(3), 388–392.PubMedCrossRef
143.
Zurück zum Zitat Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149(3), 656–670.PubMedPubMedCentralCrossRef Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C., et al. (2012). Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149(3), 656–670.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Ma, Z., Vocadlo, D. J., & Vosseller, K. (2013). Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pan-creatic cancer cells. The Journal of Biological Chemistry, 288(21), 15121–15130.PubMedPubMedCentralCrossRef Ma, Z., Vocadlo, D. J., & Vosseller, K. (2013). Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pan-creatic cancer cells. The Journal of Biological Chemistry, 288(21), 15121–15130.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., Yusuf, F. I., Williams, R. D., Muscarella, P., Melvin, W. S., & Schirmer, W. J. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57(19), 4242–4248.PubMed Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., Yusuf, F. I., Williams, R. D., Muscarella, P., Melvin, W. S., & Schirmer, W. J. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57(19), 4242–4248.PubMed
146.
Zurück zum Zitat Butera, G., Pacchiana, R., Mullappilly, N., Margiotta, M., Bruno, S., Conti, P., Riganti, C., & Donadelli, M. (2018). Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(12), 1914–1923.PubMedCrossRef Butera, G., Pacchiana, R., Mullappilly, N., Margiotta, M., Bruno, S., Conti, P., Riganti, C., & Donadelli, M. (2018). Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(12), 1914–1923.PubMedCrossRef
147.
Zurück zum Zitat Schofield, H. K., Zeller, J., Espinoza, C., Halbrook, C. J., Del Vecchio, A., Magnuson, B., Fabo, T., Daylan, A. E. C., Kovalenko, I., Lee, H. J., Yan, W., Feng, Y., Karim, S. A., Kremer, D. M., Kumar-Sinha, C., Lyssiotis, C. A., Ljungman, M., Mor-ton, J. P., Galban, S., Fearon, E. R., & Pasca di Magliano, M. (2018). Mutant p53R270H drives altered metabolism and increased invasion in pan-creatic ductal adenocarcinoma. JCI Insight, 3(2), 97422.PubMedCrossRef Schofield, H. K., Zeller, J., Espinoza, C., Halbrook, C. J., Del Vecchio, A., Magnuson, B., Fabo, T., Daylan, A. E. C., Kovalenko, I., Lee, H. J., Yan, W., Feng, Y., Karim, S. A., Kremer, D. M., Kumar-Sinha, C., Lyssiotis, C. A., Ljungman, M., Mor-ton, J. P., Galban, S., Fearon, E. R., & Pasca di Magliano, M. (2018). Mutant p53R270H drives altered metabolism and increased invasion in pan-creatic ductal adenocarcinoma. JCI Insight, 3(2), 97422.PubMedCrossRef
148.
Zurück zum Zitat Guillaumond, F., Leca, J., Olivares, O., Lavaut, M. N., Vidal, N., Berthezene, P., Dusetti, N. J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J. L., Tomasini, R., & Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adeno-carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3919–3924.PubMedPubMedCentralCrossRef Guillaumond, F., Leca, J., Olivares, O., Lavaut, M. N., Vidal, N., Berthezene, P., Dusetti, N. J., Loncle, C., Calvo, E., Turrini, O., Iovanna, J. L., Tomasini, R., & Vasseur, S. (2013). Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adeno-carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3919–3924.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Baek, G., Tse, Y. F., Hu, Z., Cox, D., Buboltz, N., McCue, P., Yeo, C. J., White, M. A., DeBerardinis, R. J., Knudsen, E. S., & Witkiewicz, A. K. (2014). MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Reports, 9(6), 2233–2249.PubMedCrossRef Baek, G., Tse, Y. F., Hu, Z., Cox, D., Buboltz, N., McCue, P., Yeo, C. J., White, M. A., DeBerardinis, R. J., Knudsen, E. S., & Witkiewicz, A. K. (2014). MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Reports, 9(6), 2233–2249.PubMedCrossRef
150.
Zurück zum Zitat Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrish-nan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792.PubMedPubMedCentralCrossRef Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrish-nan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Shi, M., Cui, J., Du, J., Wei, D., Jia, Z., Zhang, J., Zhu, Z., Gao, Y., & Xie, K. (2014). A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clinical Cancer Research, 20(16), 4370–4380.PubMedPubMedCentralCrossRef Shi, M., Cui, J., Du, J., Wei, D., Jia, Z., Zhang, J., Zhu, Z., Gao, Y., & Xie, K. (2014). A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clinical Cancer Research, 20(16), 4370–4380.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Swierczynski, J., Hebanowska, A., & Sledzinski, T. (2014). Role of abnor-mal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279–2303.PubMedPubMedCentralCrossRef Swierczynski, J., Hebanowska, A., & Sledzinski, T. (2014). Role of abnor-mal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279–2303.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A., & Thompson, C. B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.PubMedCrossRef Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A., & Thompson, C. B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.PubMedCrossRef
154.
Zurück zum Zitat Takahashi, M., Hori, M., Ishigamori, R., Mutoh, M., Imai, T., & Nakagama, H. (2018). Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Science, 109(10), 3013–3023.PubMedPubMedCentralCrossRef Takahashi, M., Hori, M., Ishigamori, R., Mutoh, M., Imai, T., & Nakagama, H. (2018). Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Science, 109(10), 3013–3023.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Waddington, C. H. (1942). The epigenotype. Endeavour., 1, 18–20. Waddington, C. H. (1942). The epigenotype. Endeavour., 1, 18–20.
157.
Zurück zum Zitat Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781–783.CrossRef Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781–783.CrossRef
158.
Zurück zum Zitat Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19(3), 219–220.PubMedCrossRef Okano, M., Xie, S., & Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19(3), 219–220.PubMedCrossRef
159.
Zurück zum Zitat Yen, R. W., Vertino, P. M., Nelkin, B. D., et al. (1992). Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Research, 20(9), 2287–2291.PubMedPubMedCentralCrossRef Yen, R. W., Vertino, P. M., Nelkin, B. D., et al. (1992). Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Research, 20(9), 2287–2291.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Li, A., Omura, N., Hong, S. M., & Goggins, M. (2010). Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biology & Therapy, 9(4), 321–329.CrossRef Li, A., Omura, N., Hong, S. M., & Goggins, M. (2010). Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biology & Therapy, 9(4), 321–329.CrossRef
161.
Zurück zum Zitat Yoder, J. A., Walsh, C. P., & Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 13(8), 335–340.PubMedCrossRef Yoder, J. A., Walsh, C. P., & Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 13(8), 335–340.PubMedCrossRef
162.
Zurück zum Zitat McCabe, M. T., Brandes, J. C., & Vertino, P. M. (2009). Cancer DNA methylation: molecular mechanisms and clinical implications. Clinical Cancer Research, 15(12), 3927–3937.PubMedPubMedCentralCrossRef McCabe, M. T., Brandes, J. C., & Vertino, P. M. (2009). Cancer DNA methylation: molecular mechanisms and clinical implications. Clinical Cancer Research, 15(12), 3927–3937.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences, 103(5), 1412–1417.CrossRef Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences, 103(5), 1412–1417.CrossRef
164.
Zurück zum Zitat Coulondre, C., Miller, J. H., Farabaugh, P. J., & Gilbert, W. (1978). Molecular basis of base substitution hotspots in Escherichia coli. Nature., 274(5673), 775.PubMedCrossRef Coulondre, C., Miller, J. H., Farabaugh, P. J., & Gilbert, W. (1978). Molecular basis of base substitution hotspots in Escherichia coli. Nature., 274(5673), 775.PubMedCrossRef
165.
Zurück zum Zitat Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J., & Bird, A. (2000). correction: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 404(6777), 525.CrossRef Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J., & Bird, A. (2000). correction: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 404(6777), 525.CrossRef
166.
Zurück zum Zitat Walsh, C. P., & Xu, G. L. Cytosine methylation and DNA repair. InDNA Methylation: Basic Mechanisms 2006 (pp. 283-315). Springer, Berlin. Heidelberg. Walsh, C. P., & Xu, G. L. Cytosine methylation and DNA repair. InDNA Methylation: Basic Mechanisms 2006 (pp. 283-315). Springer, Berlin. Heidelberg.
167.
Zurück zum Zitat Coetzee, G. A., Olumi, A. F., Spruck, C. H., & Jones, P. A. (1991). 5-Methylcytosine as an endogenous mutagen in the p53 tumor suppressor gene. InPrincess Takamatsu Symposia, 22, 207–219. Coetzee, G. A., Olumi, A. F., Spruck, C. H., & Jones, P. A. (1991). 5-Methylcytosine as an endogenous mutagen in the p53 tumor suppressor gene. InPrincess Takamatsu Symposia, 22, 207–219.
168.
Zurück zum Zitat Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(suppl_1), R47–R58.PubMedCrossRef Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(suppl_1), R47–R58.PubMedCrossRef
170.
Zurück zum Zitat Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature., 466(7310), 1129.PubMedPubMedCentralCrossRef Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., & Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature., 466(7310), 1129.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.PubMedPubMedCentralCrossRef Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Tang, B., Li, Y., Qi, G., Yuan, S., Wang, Z., Yu, S., Li, B., & He, S. (2015). Clinicopathological significance of CDKN2A promoter hypermethylation frequency with pancreatic cancer. Scientific Reports, 5, 13563.PubMedPubMedCentralCrossRef Tang, B., Li, Y., Qi, G., Yuan, S., Wang, Z., Yu, S., Li, B., & He, S. (2015). Clinicopathological significance of CDKN2A promoter hypermethylation frequency with pancreatic cancer. Scientific Reports, 5, 13563.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Matsuoka, S., Edwards, M. C., Bai, C., et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes & Development, 9(6), 650–662.CrossRef Matsuoka, S., Edwards, M. C., Bai, C., et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes & Development, 9(6), 650–662.CrossRef
174.
Zurück zum Zitat Sato, N., Matsubayashi, H., Abe, T., Fukushima, N., & Goggins, M. (2005). Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clinical Cancer Research, 11(13), 4681–4688.PubMedCrossRef Sato, N., Matsubayashi, H., Abe, T., Fukushima, N., & Goggins, M. (2005). Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clinical Cancer Research, 11(13), 4681–4688.PubMedCrossRef
175.
176.
Zurück zum Zitat Meyyappan, M., Wong, H., Hull, C., & Riabowol, K. T. (1998). Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells. Molecular and Cellular Biology, 18(6), 3163–3172.PubMedPubMedCentralCrossRef Meyyappan, M., Wong, H., Hull, C., & Riabowol, K. T. (1998). Increased expression of cyclin D2 during multiple states of growth arrest in primary and established cells. Molecular and Cellular Biology, 18(6), 3163–3172.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Terris, B., Blaveri, E., Crnogorac-Jurcevic, T., Jones, M., Missiaglia, E., Ruszniewski, P., Sauvanet, A., & Lemoine, N. R. (2002). Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. The American Journal of Pathology., 160(5), 1745–1754.PubMedPubMedCentralCrossRef Terris, B., Blaveri, E., Crnogorac-Jurcevic, T., Jones, M., Missiaglia, E., Ruszniewski, P., Sauvanet, A., & Lemoine, N. R. (2002). Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. The American Journal of Pathology., 160(5), 1745–1754.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Matsubayashi, H., Sato, N., Fukushima, N., Yeo, C. J., Walter, K. M., Brune, K., Sahin, F., Hruban, R. H., & Goggins, M. (2003). Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clinical Cancer Research, 9(4), 1446–1452.PubMed Matsubayashi, H., Sato, N., Fukushima, N., Yeo, C. J., Walter, K. M., Brune, K., Sahin, F., Hruban, R. H., & Goggins, M. (2003). Methylation of cyclin D2 is observed frequently in pancreatic cancer but is also an age-related phenomenon in gastrointestinal tissues. Clinical Cancer Research, 9(4), 1446–1452.PubMed
179.
Zurück zum Zitat Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.PubMedPubMedCentralCrossRef Li, J., Zhu, J., Hassan, M. M., Evans, D. B., Abbruzzese, J. L., & Li, D. (2007). K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas., 34(1), 55.PubMedPubMedCentralCrossRef
180.
Zurück zum Zitat Zagon, I. S., Roesener, C. D., Verderame, M. F., Ohlsson-Wilhelm, B. M., Levin, R. J., & McLaughlin, P. J. (2000). Opioid growth factor regulates the cell cycle of human neoplasias. International Journal of Oncology, 17(5), 1053–1114.PubMed Zagon, I. S., Roesener, C. D., Verderame, M. F., Ohlsson-Wilhelm, B. M., Levin, R. J., & McLaughlin, P. J. (2000). Opioid growth factor regulates the cell cycle of human neoplasias. International Journal of Oncology, 17(5), 1053–1114.PubMed
181.
Zurück zum Zitat Comb, M., & Goodman, H. M. (1990). CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 18(13), 3975–3982.PubMedPubMedCentralCrossRef Comb, M., & Goodman, H. M. (1990). CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 18(13), 3975–3982.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.PubMedPubMedCentralCrossRef Fukushima, N., Sato, N., Ueki, T., Rosty, C., Walter, K. M., Wilentz, R. E., Yeo, C. J., Hruban, R. H., & Goggins, M. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. The American Journal of Pathology., 160(5), 1573–1581.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Wen, Z., Zhong, Z., & Darnell Jr., J. E. (1995). Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell., 82(2), 241–250.PubMedCrossRef Wen, Z., Zhong, Z., & Darnell Jr., J. E. (1995). Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell., 82(2), 241–250.PubMedCrossRef
184.
Zurück zum Zitat Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K., & Akira, S. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature., 387(6636), 924.PubMedCrossRef Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K., & Akira, S. (1997). Structure and function of a new STAT-induced STAT inhibitor. Nature., 387(6636), 924.PubMedCrossRef
185.
Zurück zum Zitat Komazaki, T., Nagai, H., Emi, M., Terada, Y., Yabe, A., Jin, E., Kawanami, O., Konishi, N., Moriyama, Y., Naka, T., & Kishimoto, T. (2004). Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Japanese Journal of Clinical Oncology, 34(4), 191–194.PubMedCrossRef Komazaki, T., Nagai, H., Emi, M., Terada, Y., Yabe, A., Jin, E., Kawanami, O., Konishi, N., Moriyama, Y., Naka, T., & Kishimoto, T. (2004). Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers. Japanese Journal of Clinical Oncology, 34(4), 191–194.PubMedCrossRef
186.
Zurück zum Zitat Mah, K. M., & Weiner, J. A. (2017). Regulation of Wnt signaling by protocadherins. InSeminars in Cell & Developmental Biology, 69, 158–171 Academic Press. Mah, K. M., & Weiner, J. A. (2017). Regulation of Wnt signaling by protocadherins. InSeminars in Cell & Developmental Biology, 69, 158–171 Academic Press.
187.
Zurück zum Zitat Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.PubMedPubMedCentralCrossRef Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Curia, M. C., Fantini, F., Lattanzio, R., Tavano, F., Di Mola, F., Piantelli, M., Battista, P., Di Sebastiano, P., & Cama, A. (2019). High methylation levels of PCDH10 predict poor prognosis in patients with pancreatic ductal adenocarcinoma. BMC Cancer, 19(1), 452.PubMedPubMedCentralCrossRef Curia, M. C., Fantini, F., Lattanzio, R., Tavano, F., Di Mola, F., Piantelli, M., Battista, P., Di Sebastiano, P., & Cama, A. (2019). High methylation levels of PCDH10 predict poor prognosis in patients with pancreatic ductal adenocarcinoma. BMC Cancer, 19(1), 452.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Christoffels, V. M., Keijser, A. G., Houweling, A. C., Clout, D. E., & Moorman, A. F. (2000). Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Developmental Biology, 224(2), 263–274.PubMedCrossRef Christoffels, V. M., Keijser, A. G., Houweling, A. C., Clout, D. E., & Moorman, A. F. (2000). Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Developmental Biology, 224(2), 263–274.PubMedCrossRef
190.
Zurück zum Zitat Chakma, K., Gu, Z., Motoi, F., Unno, M., Horii, A., & Fukushige, S. (2019). DNA hypermethylation of IRX4 is a frequent event that may confer growth advantage to pancreatic cancer cells., 01, 821–821. Chakma, K., Gu, Z., Motoi, F., Unno, M., Horii, A., & Fukushige, S. (2019). DNA hypermethylation of IRX4 is a frequent event that may confer growth advantage to pancreatic cancer cells., 01, 821–821.
191.
Zurück zum Zitat Eissa, M. A., Lerner, L., Abdelfatah, E., Shankar, N., Canner, J. K., Hasan, N. M., Yaghoobi, V., Huang, B., Kerner, Z., Takaesu, F., & Wolfgang, C. (2019). Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 11(1), 59.PubMedPubMedCentralCrossRef Eissa, M. A., Lerner, L., Abdelfatah, E., Shankar, N., Canner, J. K., Hasan, N. M., Yaghoobi, V., Huang, B., Kerner, Z., Takaesu, F., & Wolfgang, C. (2019). Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 11(1), 59.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Sato, N., Fukushima, N., Matsubayashi, H., Iacobuzio-Donahue, C. A., Yeo, C. J., & Goggins, M. (2006). Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer., 107(2), 251–257.PubMedCrossRef Sato, N., Fukushima, N., Matsubayashi, H., Iacobuzio-Donahue, C. A., Yeo, C. J., & Goggins, M. (2006). Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer., 107(2), 251–257.PubMedCrossRef
193.
Zurück zum Zitat Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., & Goggins, M. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.PubMed Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., & Goggins, M. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.PubMed
194.
Zurück zum Zitat Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., Hruban, R. H., & Goggins, M. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63(13), 3735–3742.PubMed Sato, N., Fukushima, N., Maitra, A., Matsubayashi, H., Yeo, C. J., Cameron, J. L., Hruban, R. H., & Goggins, M. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Research, 63(13), 3735–3742.PubMed
195.
Zurück zum Zitat Li, A., Omura, N., Hong, S. M., Vincent, A., Walter, K., Griffith, M., Borges, M., & Goggins, M. (2010). Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Research, 70(13), 5226–5237.PubMedPubMedCentralCrossRef Li, A., Omura, N., Hong, S. M., Vincent, A., Walter, K., Griffith, M., Borges, M., & Goggins, M. (2010). Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Research, 70(13), 5226–5237.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., Hruban, R. H., & Goggins, M. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor–stromal interactions. Oncogene., 22(32), 5021.PubMedCrossRef Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., Hruban, R. H., & Goggins, M. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor–stromal interactions. Oncogene., 22(32), 5021.PubMedCrossRef
197.
Zurück zum Zitat Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., Hidalgo, M., & Goggins, M. (2008). Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(7), 1146–1156.CrossRef Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., Hidalgo, M., & Goggins, M. (2008). Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(7), 1146–1156.CrossRef
198.
Zurück zum Zitat Li, J., Wu, H., Li, W., Yin, L., Guo, S., Xu, X., Ouyang, Y., Zhao, Z., Liu, S., Tian, Y., & Tian, Z. (2016). Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene., 35(42), 5501.PubMedPubMedCentralCrossRef Li, J., Wu, H., Li, W., Yin, L., Guo, S., Xu, X., Ouyang, Y., Zhao, Z., Liu, S., Tian, Y., & Tian, Z. (2016). Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene., 35(42), 5501.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.PubMedPubMedCentralCrossRef Vincent, A., Omura, N., Hong, S. M., Jaffe, A., Eshleman, J., & Goggins, M. (2011). Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clinical Cancer Research, 17(13), 4341–4354.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Thompson, M. J., Rubbi, L., Dawson, D. W., Donahue, T. R., & Pellegrini, M. (2015). Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One, 10(6), e0128814.PubMedPubMedCentralCrossRef Thompson, M. J., Rubbi, L., Dawson, D. W., Donahue, T. R., & Pellegrini, M. (2015). Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS One, 10(6), e0128814.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., et al. (1983). The 5- methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11, 6883–6894.PubMedPubMedCentralCrossRef Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., et al. (1983). The 5- methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11, 6883–6894.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Feinberg, A. P., Vogelstein, B., et al. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature., 301, 89–92.PubMedCrossRef Feinberg, A. P., Vogelstein, B., et al. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature., 301, 89–92.PubMedCrossRef
203.
Zurück zum Zitat Rauch, T. A., Zhong, X., Wu, X., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMedCrossRef Rauch, T. A., Zhong, X., Wu, X., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 252–257.PubMedCrossRef
204.
Zurück zum Zitat Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene., 21, 5400–5413.PubMedCrossRef Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene., 21, 5400–5413.PubMedCrossRef
205.
Zurück zum Zitat Ohike, N., Maass, N., Mundhenke, C., et al. (2003). Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Letters, 199(2), 193–200.PubMedCrossRef Ohike, N., Maass, N., Mundhenke, C., et al. (2003). Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Letters, 199(2), 193–200.PubMedCrossRef
206.
Zurück zum Zitat Sato, N., Maitra, A., Fukushima, N., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.PubMed Sato, N., Maitra, A., Fukushima, N., et al. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Research, 63(14), 4158–4166.PubMed
207.
Zurück zum Zitat Chen, H., Kong, Y., Yao, Q., Zhang, X., Fu, Y., Li, J., Liu, C., & Wang, Z. (2019). Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging (Albany NY), 11(3), 885.CrossRef Chen, H., Kong, Y., Yao, Q., Zhang, X., Fu, Y., Li, J., Liu, C., & Wang, Z. (2019). Three hypomethylated genes were associated with poor overall survival in pancreatic cancer patients. Aging (Albany NY), 11(3), 885.CrossRef
208.
Zurück zum Zitat Zhu, Y., Zhang, J. J., Zhu, R., Zhu, Y., Liang, W. B., Gao, W. T., Yu, J. B., Xu, Z. K., & Miao, Y. (2011). The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma. Medical Oncology, 28(1), 175–184.CrossRef Zhu, Y., Zhang, J. J., Zhu, R., Zhu, Y., Liang, W. B., Gao, W. T., Yu, J. B., Xu, Z. K., & Miao, Y. (2011). The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma. Medical Oncology, 28(1), 175–184.CrossRef
209.
Zurück zum Zitat Sekine, H., Chen, N., Sato, K., Saiki, Y., Yoshino, Y., Umetsu, Y., Jin, G., Nagase, H., Gu, Z., Fukushige, S., & Sunamura, M. (2012). S100A4, frequently overexpressed in various human cancers, accelerates cell motility in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 429(3-4), 214–219.PubMedCrossRef Sekine, H., Chen, N., Sato, K., Saiki, Y., Yoshino, Y., Umetsu, Y., Jin, G., Nagase, H., Gu, Z., Fukushige, S., & Sunamura, M. (2012). S100A4, frequently overexpressed in various human cancers, accelerates cell motility in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 429(3-4), 214–219.PubMedCrossRef
210.
Zurück zum Zitat Feinberg, A. P., Koldobskiy, M. A., & Göndör, A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews. Genetics, 17(5), 284.PubMedPubMedCentralCrossRef Feinberg, A. P., Koldobskiy, M. A., & Göndör, A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews. Genetics, 17(5), 284.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Abukiwan A, Berger MR. Epigenetics: dissecting gene expression alteration in PDAC. In Advances in DNA Repair 2018 Nov 5. IntechOpen. Abukiwan A, Berger MR. Epigenetics: dissecting gene expression alteration in PDAC. In Advances in DNA Repair 2018 Nov 5. IntechOpen.
212.
Zurück zum Zitat Ramassone, A., Pagotto, S., Veronese, A., & Visone, R. (2018). Epigenetics and microRNAs in cancer. International Journal of Molecular Sciences, 19(2), 459.PubMedCentralCrossRef Ramassone, A., Pagotto, S., Veronese, A., & Visone, R. (2018). Epigenetics and microRNAs in cancer. International Journal of Molecular Sciences, 19(2), 459.PubMedCentralCrossRef
213.
Zurück zum Zitat Iguchi, E., Safgren, S. L., Marks, D. L., Olson, R. L., & Fernandez-Zapico, M. E. (2016). Focus: epigenetics: pancreatic cancer, a mis-interpreter of the epigenetic language. The Yale Journal of Biology and Medicine., 89(4), 575.PubMedPubMedCentral Iguchi, E., Safgren, S. L., Marks, D. L., Olson, R. L., & Fernandez-Zapico, M. E. (2016). Focus: epigenetics: pancreatic cancer, a mis-interpreter of the epigenetic language. The Yale Journal of Biology and Medicine., 89(4), 575.PubMedPubMedCentral
214.
Zurück zum Zitat Fernandez, A. F., Assenov, Y., Martin-Subero, J. I., Balint, B., Siebert, R., Taniguchi, H., Yamamoto, H., Hidalgo, M., Tan, A. C., Galm, O., et al. (2012). A DNA methylation fingerprint of 1628 human samples. Genome Research, 22(2), 407–419.PubMedPubMedCentralCrossRef Fernandez, A. F., Assenov, Y., Martin-Subero, J. I., Balint, B., Siebert, R., Taniguchi, H., Yamamoto, H., Hidalgo, M., Tan, A. C., Galm, O., et al. (2012). A DNA methylation fingerprint of 1628 human samples. Genome Research, 22(2), 407–419.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Hao, X., Luo, H., Krawczyk, M., Wei, W., Wang, W., Wang, J., Flagg, K., Hou, J., Zhang, H., Yi, S., et al. (2017). DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7414–7419.PubMedPubMedCentralCrossRef Hao, X., Luo, H., Krawczyk, M., Wei, W., Wang, W., Wang, J., Flagg, K., Hou, J., Zhang, H., Yi, S., et al. (2017). DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7414–7419.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Rodríguez-Rodero, S., Fernández, A. F., Fernández-Morera, J. L., Castro-Santos, P., Bayon, G. F., Ferrero, C., Urdinguio, R. G., Gonzalez-Marquez, R., Suarez, C., Fernández-Vega, I., & Fresno Forcelledo, M. F. (2013). DNA methylation signatures identify biologically distinct thyroid cancer subtypes. The Journal of Clinical Endocrinology & Metabolism., 98(7), 2811–2821.CrossRef Rodríguez-Rodero, S., Fernández, A. F., Fernández-Morera, J. L., Castro-Santos, P., Bayon, G. F., Ferrero, C., Urdinguio, R. G., Gonzalez-Marquez, R., Suarez, C., Fernández-Vega, I., & Fresno Forcelledo, M. F. (2013). DNA methylation signatures identify biologically distinct thyroid cancer subtypes. The Journal of Clinical Endocrinology & Metabolism., 98(7), 2811–2821.CrossRef
217.
Zurück zum Zitat Baylin, S. B., & Jones, P. A. (2011). A decade of exploring the cancer epigenome – biological and translational implications. Nature Reviews. Cancer, 11(10), 726–734.PubMedPubMedCentralCrossRef Baylin, S. B., & Jones, P. A. (2011). A decade of exploring the cancer epigenome – biological and translational implications. Nature Reviews. Cancer, 11(10), 726–734.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Moran, S., Martinez-Cardus, A., Sayols, S., Musulen, E., Balana, C., Estival-Gonzalez, A., Moutinho, C., Heyn, H., Diaz-Lagares, A., de Moura, M. C., et al. (2016). Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. The Lancet Oncology, 17(10), 1386–1395.PubMedCrossRef Moran, S., Martinez-Cardus, A., Sayols, S., Musulen, E., Balana, C., Estival-Gonzalez, A., Moutinho, C., Heyn, H., Diaz-Lagares, A., de Moura, M. C., et al. (2016). Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. The Lancet Oncology, 17(10), 1386–1395.PubMedCrossRef
219.
Zurück zum Zitat Kanwal, R., & Gupta, S. (2012). Epigenetic modifications in cancer. Clinical Genetics, 81(4), 303–311.PubMedCrossRef Kanwal, R., & Gupta, S. (2012). Epigenetic modifications in cancer. Clinical Genetics, 81(4), 303–311.PubMedCrossRef
220.
Zurück zum Zitat Hosseini A, Minucci S (2018). Alterations of histone modifications in cancer. In: Epigenetics in human disease, vol. 6. 2nd ed; p. 141–217. Hosseini A, Minucci S (2018). Alterations of histone modifications in cancer. In: Epigenetics in human disease, vol. 6. 2nd ed; p. 141–217.
221.
Zurück zum Zitat Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8, 9.CrossRef Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8, 9.CrossRef
222.
Zurück zum Zitat Berdasco, M., & Esteller, M. (2018). Clinical epigenetics: seizing opportunities for translation. Nature Reviews. Genetics. Berdasco, M., & Esteller, M. (2018). Clinical epigenetics: seizing opportunities for translation. Nature Reviews. Genetics.
223.
Zurück zum Zitat Rodriguez-Paredes, M., & Esteller, M. (2011). Cancer epigenetics reaches mainstream oncology. Nature Medicine, 17(3), 330–339.PubMedCrossRef Rodriguez-Paredes, M., & Esteller, M. (2011). Cancer epigenetics reaches mainstream oncology. Nature Medicine, 17(3), 330–339.PubMedCrossRef
224.
Zurück zum Zitat Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews. Genetics, 17(8), 487–500.PubMedCrossRef Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews. Genetics, 17(8), 487–500.PubMedCrossRef
225.
Zurück zum Zitat Herman, J. G., & Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine, 349(21), 2042–2054.PubMedCrossRef Herman, J. G., & Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine, 349(21), 2042–2054.PubMedCrossRef
226.
Zurück zum Zitat Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genomewide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.PubMedCrossRef Palii, S. S., Van Emburgh, B. O., Sankpal, U. T., Brown, K. D., & Robertson, K. D. (2008). DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genomewide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Molecular and Cellular Biology, 28(2), 752–771.PubMedCrossRef
227.
Zurück zum Zitat Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., et al. (2015). Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell., 162(5), 974–986.PubMedPubMedCentralCrossRef Chiappinelli, K. B., Strissel, P. L., Desrichard, A., Li, H., Henke, C., Akman, B., Hein, A., Rote, N. S., Cope, L. M., Snyder, A., et al. (2015). Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell., 162(5), 974–986.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., et al. (2015). DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell., 162(5), 961–973.PubMedPubMedCentralCrossRef Roulois, D., Loo Yau, H., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P. A., Pugh, T. J., et al. (2015). DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell., 162(5), 961–973.PubMedPubMedCentralCrossRef
229.
Zurück zum Zitat Xue, K., Gu, J. J., Zhang, Q., Mavis, C., Hernandez-Ilizaliturri, F. J., Czuczman, M. S., & Guo, Y. (2016). Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. Journal of Cancer Research and Clinical Oncology, 142(2), 379–387.PubMedCrossRef Xue, K., Gu, J. J., Zhang, Q., Mavis, C., Hernandez-Ilizaliturri, F. J., Czuczman, M. S., & Guo, Y. (2016). Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. Journal of Cancer Research and Clinical Oncology, 142(2), 379–387.PubMedCrossRef
230.
Zurück zum Zitat Kronfol, M. M., Dozmorov, M. G., Huang, R., Slattum, P. W., & McClay, J. L. (2017). The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev., 2(1), 33–45.PubMedPubMedCentralCrossRef Kronfol, M. M., Dozmorov, M. G., Huang, R., Slattum, P. W., & McClay, J. L. (2017). The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev., 2(1), 33–45.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.PubMedCrossRef Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.PubMedCrossRef
232.
Zurück zum Zitat Juergens, R. A., Wrangle, J., Vendetti, F. P., Murphy, S. C., Zhao, M., Coleman, B., Sebree, R., Rodgers, K., Hooker, C. M., Franco, N., et al. (2011). Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discovery, 1(7), 598–607.PubMedPubMedCentralCrossRef Juergens, R. A., Wrangle, J., Vendetti, F. P., Murphy, S. C., Zhao, M., Coleman, B., Sebree, R., Rodgers, K., Hooker, C. M., Franco, N., et al. (2011). Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discovery, 1(7), 598–607.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Jones, P. A., Issa, J. P., & Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nature Reviews. Genetics, 17(10), 630–641.PubMedCrossRef Jones, P. A., Issa, J. P., & Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nature Reviews. Genetics, 17(10), 630–641.PubMedCrossRef
234.
Zurück zum Zitat Ezzati, M., Henley, S. J., Lopez, A. D., & Thun, M. J. (2005). Role of smoking in global and regional cancer epidemiology: current patterns and data needs. International Journal of Cancer, 116(6), 963–971.PubMedCrossRef Ezzati, M., Henley, S. J., Lopez, A. D., & Thun, M. J. (2005). Role of smoking in global and regional cancer epidemiology: current patterns and data needs. International Journal of Cancer, 116(6), 963–971.PubMedCrossRef
235.
Zurück zum Zitat Jarosz, M., Sekuła, W., & Rychlik, E. (2012). Influence of diet and tobacco smoking on pancreatic cancer incidence in Poland in 1960–2008. Gastroenterology Research and Practice, 2012. Jarosz, M., Sekuła, W., & Rychlik, E. (2012). Influence of diet and tobacco smoking on pancreatic cancer incidence in Poland in 1960–2008. Gastroenterology Research and Practice, 2012.
236.
Zurück zum Zitat Wang, Y. T., Gou, Y. W., Jin, W. W., Xiao, M., & Fang, H. Y. (2016). Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies. BMC Cancer, 16(1), 212.PubMedPubMedCentralCrossRef Wang, Y. T., Gou, Y. W., Jin, W. W., Xiao, M., & Fang, H. Y. (2016). Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies. BMC Cancer, 16(1), 212.PubMedPubMedCentralCrossRef
237.
Zurück zum Zitat Jacobs, E. J., Chanock, S. J., Fuchs, C. S., LaCroix, A., McWilliams, R. R., Steplowski, E., Stolzenberg-Solomon, R. Z., Arslan, A. A., Bueno-de-Mesquita, H. B., Gross, M., & Helzlsouer, K. (2010). Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 127(6), 1421–1428.PubMedPubMedCentralCrossRef Jacobs, E. J., Chanock, S. J., Fuchs, C. S., LaCroix, A., McWilliams, R. R., Steplowski, E., Stolzenberg-Solomon, R. Z., Arslan, A. A., Bueno-de-Mesquita, H. B., Gross, M., & Helzlsouer, K. (2010). Family history of cancer and risk of pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). International Journal of Cancer, 127(6), 1421–1428.PubMedPubMedCentralCrossRef
238.
Zurück zum Zitat Davoodi, S. H., Malek-Shahabi, T., Malekshahi-Moghadam, A., Shahbazi, R., & Esmaeili, S. (2013). Obesity as an important risk factor for certain types of cancer. Iranian Journal of Cancer Prevention., 6(4), 186.PubMedPubMedCentral Davoodi, S. H., Malek-Shahabi, T., Malekshahi-Moghadam, A., Shahbazi, R., & Esmaeili, S. (2013). Obesity as an important risk factor for certain types of cancer. Iranian Journal of Cancer Prevention., 6(4), 186.PubMedPubMedCentral
239.
Zurück zum Zitat Aune, D., Greenwood, D. C., Chan, D. S., Vieira, R., Vieira, A. R., Navarro Rosenblatt, D. A., Cade, J. E., Burley, V. J., & Norat, T. (2011). Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Annals of Oncology, 23(4), 843–852.PubMedCrossRef Aune, D., Greenwood, D. C., Chan, D. S., Vieira, R., Vieira, A. R., Navarro Rosenblatt, D. A., Cade, J. E., Burley, V. J., & Norat, T. (2011). Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Annals of Oncology, 23(4), 843–852.PubMedCrossRef
240.
Zurück zum Zitat Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.PubMedPubMedCentralCrossRef Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World Journal of Oncology., 10(1), 10.PubMedPubMedCentralCrossRef
Metadaten
Titel
An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression
verfasst von
Aamir Ali Khan
Xinhui Liu
Xinlong Yan
Muhammad Tahir
Sakhawat Ali
Hua Huang
Publikationsdatum
10.01.2021
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2021
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09952-0

Neu im Fachgebiet Onkologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Welche Krebserkrankungen bei Zöliakie häufiger auftreten

Eine große Kohortenstudie hat den Zusammenhang zwischen Zöliakie und gastrointestinalen Krebserkrankungen und inflammatorischen Krankheiten untersucht. Neben gastrointestinalen Tumoren ist auch ein nicht solider Krebs häufiger.

Adjuvanter PD-L1-Hemmer verhindert Rezidive bei Hochrisiko-Urothelkarzinom

Sind Menschen mit muskelinvasivem Urothelkarzinom für die neoadjuvante platinbasierte Therapie nicht geeignet oder sprechen sie darauf nicht gut an, ist Pembrolizumab eine adjuvante Alternative: Die krankheitsfreie Lebenszeit wird dadurch mehr als verdoppelt.

Duale Checkpointhemmung gegen Melanome verlängert langfristig das Leben

Im Vergleich zu den Überlebenschancen vor der Einführung von Immuncheckpointhemmern (ICI) ist der Fortschritt durch eine ICI-Kombination mit unterschiedlichen Tagets bei fortgeschrittenem Melanom erstaunlich. Das belegen die finalen Ergebnisse der CheckMate-067-Studie und geben Betroffenen "Hoffnung auf Heilung".

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.