Skip to main content
main-content

13.06.2016 | Original Article | Ausgabe 11/2016

International Journal of Computer Assisted Radiology and Surgery 11/2016

An SPCNN-GVF-based approach for the automatic segmentation of left ventricle in cardiac cine MR images

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 11/2016
Autoren:
Yurun Ma, Li Wang, Yide Ma, Min Dong, Shiqiang Du, Xiaoguang Sun

Abstract

Purpose

Accurate segmentation of left ventricle (LV) is essential for the cardiac function analysis. However, it is labor intensive and time consuming for radiologists to delineate LV boundary manually. In this paper, we present a novel self-correcting framework for the fully automatic LV segmentation.

Methods

Firstly, a time-domain method is designed to extract a rectangular region of interest around the heart. Then, the simplified pulse-coupled neural network (SPCNN) is employed to locate the LV cavity. Different from the existing approaches, SPCNN can realize the self-correcting segmentation due to its parameter controllability. Subsequently, the post-processing based on the maximum gradient searching is proposed to obtain the accurate endocardium. Finally, a new external force based on the shape similarity is defined and integrated into the gradient vector flow (GVF) snake with the balloon force to segment the epicardium.

Results

We obtain encouraging segmentation results tested on the database provided by MICCAI 2009. The average percentage of good contours is 92.26 %, the average perpendicular distance is 2.38 mm, and the overlapping dice metric is 0.89. Besides, the experiment results show good correlations between the automatic segmentation and the manual delineation (for the LV ejection fraction and the LV myocardial mass, the correlation coefficients R are 0.9683 and 0.9278, respectively).

Conclusion

We propose an effective and fast method combing the SPCNN and the improved GVF for the automatic segmentation of LV.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2016

International Journal of Computer Assisted Radiology and Surgery 11/2016 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.