Skip to main content
Erschienen in: EJNMMI Research 1/2019

Open Access 01.12.2019 | Original research

An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [18F]FDG PET/CT —the inference from a juvenile porcine model

verfasst von: P. Afzelius, O. L. Nielsen, H. C. Schønheyder, A.K.O. Alstrup, S. B. Hansen

Erschienen in: EJNMMI Research | Ausgabe 1/2019

Abstract

Purpose

To examine parameters affecting the detection of osteomyelitis (OM) by [18F]FDG PET/CT and to reduce tracer activity in a pig model.

Background

[18F]FDG PET/CT is recommended for the diagnosis of OM in the axial skeleton of adults. In children, OM has a tendency to become chronic or recurrent, especially in low-income countries. Early diagnosis and initiation of therapy are therefore essential. We have previously demonstrated that [18F]FDG PET/CT is promising in juvenile Staphylococcus aureus (S. aureus) OM of peripheral bones in a pig model, not failing even small lesions. When using imaging in children, radiation exposure should be balanced against fast diagnostics in the individual case.

Methods

Twenty juvenile pigs were inoculated with S. aureus. One week after inoculation, the pigs were [18F]FDG PET/CT scanned. PET list-mode acquired data of a subgroup were retrospectively processed in order to simulate and examine the image quality obtainable with an injected activity of 132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq, respectively.

Results

All lesions were detected by [18F]FDG PET and CT. Some lesions were very small (0.01 cm3), and others were larger (4.18 cm3). SUVmax was higher when sequesters (p = 0.023) and fistulas were formed (p < 0.0001). The simulated data demonstrated that it was possible to reduce the activity to 4.4 MBq without compromising image quality in pigs.

Conclusions

[18F]FDG PET/CT localized even small OM lesions in peripheral bones. It was possible to reduce the injected activity considerably without compromising image quality, impacting the applicability of PET/CT in peripheral OM in children.
Abkürzungen
BW
Body weight
CFU
Colony forming units
CT
Computed tomography
FDG
[18F]-fluorodeoxyglucose
HE
Haematoxylin-eosin
i.m.
Intramuscular
MRI
Magnetic resonance imaging
OM
Osteomyelitis
PET
Positron emission tomography
ROC
Receiver operating characteristics
S. aureus
Staphylococcus aureus
SNR
Signal to noise
SUVmax
Maximal standardized uptake value

Background

Osteomyelitis (OM) of long bones may be difficult to treat despite advances in operative techniques and treatment with antibiotics, resulting in considerable morbidity, cost, and sometimes even mortality. The latter is, however, more likely a problem in low-income countries [1, 2]. Cure rates of more than 95% are otherwise achievable with prompt and sufficient treatment [3]. OM has a tendency to become chronic or recurrent. Early diagnosis and initiation of therapy are, therefore, essential to prevent disease progression and to reduce potentially serious complications [4].
The golden standard for diagnosing OM is invasive demanding bone biopsy with histopathologic examination and culturing of the bacteria causing the disease. Imaging on the contrary is non-invasive.
Radiography, computed tomography (CT), and magnetic resonance imaging (MRI) have the advantages of very good spatial resolutions and can show very accurate images of the morphology of anatomical structures. The diagnostic methods using radioisotopes (gamma-camera imaging and positron emission tomography (PET)) have the advantages of showing physiology in vivo, as reflected by the uptake of tracers in the body. Therefore, the techniques are not in competition with each other but complement each other, and by combining modalities like PET and CT, it is possible to acquire both the physiological and the morphological information.
Conventional radiography is unable to diagnose acute OM. OM lesions must extend at least 1 cm and lead to a 30–50% reduction of bone mineral content to generate recognizable radiographic changes [5]. Early findings may be subtle, and changes may not be obvious within the first 5–7 days in children and within 10–14 days in adults. MRI, bone scintigraphy, and CT are central imaging modalities for diagnosing acute OM in children [6], the latter two, however, adding substantially to the radiation exposure of the child. MRI is often considered the best imaging method but is not always available and requires anaesthesia in young children.
Bone scintigraphy demonstrates osteoblastic activity and is considered highly sensitive but not particularly specific [79]; however, the reports on the latter diverge, probably depending on the stage of the disease and the age of the patient as well [10]. [18F]-fluorodeoxyglucose (FDG) PET may have the highest diagnostic accuracy for confirming or excluding chronic OM in comparison with bone scintigraphy, MRI, and leukocyte scintigraphy. [18F]FDG is a glucose analogue containing the radioactive isotope fluorine-18 (18F) and is like glucose taken up by inflammatory cells. Most studies have addressed [18F]FDG PET for use in the axial skeleton [11, 12], and not in the appendicular skeleton. PET/CT is an invaluable diagnostic tool using ionizing radiation. It is important to be aware of the potential risks of radiation-induced cancer associated with PET/CT examinations and to avoid unwarranted examinations. There is a strong urge to use PET/CT where there is a relevant clinical problem, where the outcome depends on the PET/CT examination, and where non-ionizing alternatives such as MRI and ultrasonic sound examination are inferior.
Children are more sensitive to ionizing radiation than adults [13]. Their cells divide more often, and they live longer after irradiation exposure, allowing potential cancers more time to develop. This consideration has been incorporated into the modern health care system, where all procedures in children involving ionizing radiation exposure are in particular optimized to reduce the dose burden. Most procedures are classical X-ray examinations; however, more advanced examinations like CT and PET are playing an increasing role and are contributing more and more to the overall dose derived from medical procedures. When using imaging modalities in children, radiation exposure should therefore be balanced against the possibility of offering a swift and useful diagnostic procedure, which will depend on the individual case.
We have recently demonstrated that [18F]FDG PET was effective in visualizing OM lesions in the peripheral bones of juvenile pigs [1416]. We also saw that both sequesters and fistulas formed as early as during the first week after inoculation with Staphylococcus aureus (S. aureus), indicating an unfavourable stage of OM according to the human Cierny-Mader staging [1719].
OM is most often found in children and elderly [10]. It can be caused by a number of bacteria, but the majority of OM infections are caused by S. aureus [4].
In this study, we focus primarily on ionizing radiation originating from 18F in a juvenile porcine S. aureus OM model, and we simulated different signal-to-noise (SNR) levels in PET images corresponding to various amounts of administered [18F]FDG activity. We hypothesize that very low activity levels of injected [18F]FDG are sufficient to diagnose OM. If the hypothesis is confirmed, this information is useful for protocol optimization in order to reduce the radiation exposure without compromising the diagnostic value.

Material and methods

Pigs and the S. aureus model

Twenty clinically healthy, specific pathogen-free Danish Landrace-Yorkshire crossbreed female pigs aged 8–12 weeks were purchased from local commercial pig farmers. After 1 week of acclimatization, the pigs were, under propofol anaesthesia, inoculated with a suspension of a porcine strain of S. aureus (S54F9) (104–105 colony forming units (CFU) per kilogram body weight (BW) in 1.0 to 1.5 mL saline) into the femoral artery of the right hind limb simulating haematogenously spread OM in children and avoiding reactive changes induced by the trauma of directly inoculating in a peripheral bone, as described [20].
Most pigs developed clinical signs of infection, e.g., limp in the right hind limb, and after the first pigs, the following were supplied with a single intramuscular (i.m.) injection of procaine benzylpenicillin 10,000 IE/kg (Penovet, Boehringer Ingelheim, Copenhagen, Denmark) to avoid sepsis [21]. Buprenorphine (45 μg/kg Temgesic (Reckitt Benckiser, Berkshire, England)) was given three times daily from the time of inoculation until euthanasia [21]. 1 week after the inoculation, the pigs were anaesthetized and scanned.
After scanning, the pigs were euthanized with pentobarbital (100 mg/kg intravenously) and necropsied, macroscopic lesions noted, and samples collected for histopathology and microbiology. For histopathology, tissues were formalin-fixed for 4 days–30 months, decalcified (bone), dehydrated, embedded with paraffin wax, cut in 3–5 μm thick sections, and stained with haematoxylin-eosin (HE) using standard methods.
The study was approved by the Danish Animal Experimentation Board (no. 2012-15-2934-000123 and no. 2017-15-0201-01239). All facilities were approved by the Danish Occupational Health Surveillance.

PET/CT scan

The pigs were CT scanned to confirm OM developments 1 day prior to [18F]FDG PET/CT scans. [18F]FDG was produced by a standard procedure applying a GE Healthcare MX Tracerlab synthesizer, MX cassettes supplied by Rotem Industries (Arava, Israel), and chemical kits supplied by ABX GmbH (Radeberg, Germany). The radiochemical purity was higher than 99%.
Scanning at the Department of Nuclear Medicine and PET Centre in Aarhus was performed with an integrated PET/CT system (Siemens Biograph TruePoint™ 3737 64 PET/CT, Siemens Healthineers, Erlangen, Germany), one bed position spanning 21 cm in the axial direction. The pigs were anaesthetized with propofol and intubated (for mechanical ventilation) and placed in dorsal recumbency as described in [22]. The pigs were placed in the scanners as symmetrical as possible so that the non-inoculated hind limb (left) could be used for comparison. Initially, a scout view was obtained to ensure body coverage of the inoculated limb (right). A CT scan for attenuation correction of PET data was obtained first. PET images were reconstructed using the iterative TrueX algorithm (Siemens), and CT and PET data were co-registered for image fusion by the system. Total activity of 132 MBq [18F]FDG was injected in a jugular vein of the two pigs used for simulation, corresponding to 6.2 MBq/kg BW; the other pigs received 6 MBq/kg BW. CT scans for characterization and diagnostics were used, especially in the beginning of the study as the radiation burden was not a limitation and we wanted to make sure that no lesion was overlooked (lesions were primarily identified by osteolysis). Later on, we managed to reduce the mAs to 29 corresponding to an effective dose of approximately 0.2 mSv for scanning the legs without any loss of information on OM. We did not explore this further, as the CT part of PET/CT scanners has improved remarkably with respect to dose reduction since our scanners were installed.
At the Nuclear Medicine Department of Aalborg University Hospital, the pigs were placed in dorsal recumbency position and PET/CT scanned applying an integrated system (GE VCT Discovery True 64 PET/CT 2006, GE Healthcare, USA), one bed position spanning 15 cm. PET images were reconstructed using an iterative algorithm (ViewPoint algorithm (GE Healthcare)) and attenuation correction based on low-dose CT.

[18F]FDG dose simulation

For two pigs (#12 and #13), PET images from Aarhus were retrospectively simulated from the originally acquired data. PET list-mode data of the hind limbs acquired 30–60 min after injection of [18F]FDG were histogrammed into 60 time frames each with 0.5 min duration and subsequently reconstructed using the TrueX iterative algorithm. Four sets of PET images with a varying signal-to-noise level were generated by summing 2, 6, 20, and 60 time frames symmetrically around the time point 45 min after tracer injection. Thereby, the four sets of images represented 1, 3, 10, and 30 min effective scan time at an average time point of 45 min post-tracer injection. For a constant scan time of 30 min, these images would represent the image quality obtainable with an injected activity of 132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq respectively.

Reading the scans

PET with [18F]FDG and CT were read individually. PET was also read as fused images with CT. All scans were evaluated by an experienced specialist in nuclear medicine and CT on a Dell Precision T7400 working station (Dell, Austin, TX, USA) using the Philips Extended Brilliance™ Workspace V.4.52.40140 EBW-NM 2.01 software (Philips Health care, PC Best, The Netherlands).

Microbiology

The inoculums were prepared from the S54F9 strain of S. aureus, isolated from a chronic embolic pulmonary abscess in a pig [23]. The strain is pan-susceptible, and the clinical signs of OM were modifiable with procaine benzylpenicillin. The target inoculum was 104 CFU/kg BW and was inoculated in the femoral artery of the right hind limb 7 days prior to the scans. Swabs and tissue biopsies were obtained postmortem for bacteriological culture to confirm the bacterial agent, although S. aureus was identified in a few lesions by immunohistochemistry as described previously [24].

Statistics

A two-tailed Pearson test was used for correlations, and for comparison of groups, a Mann-Whitney U test was used. A p level of < 0.05 was considered statistically significant.

Results

After the inoculation with S. aureus, the pigs developed 56 OM lesions in different anatomical locations in the field covered by CT. The OM lesions were diagnosed by the presence of the main osteolysis by CT. Most lesions were also identified during necropsy revealing concordance between gross pathology changes and the CT diagnoses (Fig. 1). Microbiology (re-isolation of the inoculated S. aureus bacterium) was performed at least in one lesion from each of the pigs, although S. aureus was identified in a few lesions by immunohistochemistry (Table 1). Tissues were collected for histopathology, and descriptions (subacute OM) have been presented, along with other findings, for some of the pigs in previous papers (see references in Table 1).
Table 1
Findings by CT, PET, necropsy, and microbiology of the individual pigs. Fifty-five of the OM lesions were found in the right hind limb, and one was found in right humerus
Piga
Number of OM (CT)
Number of OM (PET)
Number of OM (necropsy and/or histology)
Microbial S. aureus
Vol. ranges cm3
SUV ranges g/ml
FDG activity MBq/kg
1a
4
4
3
Yes
0.16–2.54
2.6–4.4
7.48
2a
1
1
1
Yesc
2.05
3.9
9.73
3a
2
2
1
Yesc
0.02–0.23
5.2–5.7
9.36
4a
1
1
1
Yes
3.76
2.4
18.86
5a
3
3
3
Yesc
0.42–2.41
4.0–7.3
18.86
6
5
5
5
Yes
0.07–0.36
2.3–5.9
17.09
7a
4
4
4
Yes
0.17–0.73
2.9–4.5
22.09
8a
5
5
6b
Yesc
0.33–0.59
10.5–16.3
22.42
9a
2
2
1
Yesc
0.01–0.29
3.4–9.0
6.10
10
3
3
1
Yesc
0.01–4.18
4.0–9.2
6,67
11
4
4
3
Yesc
0.07–0.36
3.0–6.4
6.23
12
3
3
2
Yesc
0.21–1.52
2.4–8.0
5.97
13
2
2
1
Yes
0.29–0.79
4.6–5.9
5.0
14
4
4
4
Yesc
0.25–0.45
4.4–5.1
3.98
15
3
3
3
Yes
0.09–0.36
3.0–6.1
5.18
16
3
3
3
Yes
0.03–1.37
1.0–3.9
5.55
17
1
1
1
Yesc
0.03
6.1
5.42
18
2
2
2
Yesc
0.58–2.28
7.8–10.1
5.0
19
3
3
3
Yesc
0.05–3.84
4.0–7.8
5.85
20
1
1
2b
Yesc
0.01
3.6
4.86
aSome data from these pigs have been published previously: pigs 1–3 [14, 15], pigs 5–8 [16], and pigs 1–9 [40, 41]
bPigs 8 and 20 were diagnosed with osteomyelitis by necropsy and/or histology disclosing affection of the proximal and intermediary phalanges of toe no. IV in pig 8 and the intermediary and distal phalanges of toe no. V in pig 20; by scanning, only one of the lesions in each of the pigs was identified
cS. aureus identified by cultivation from a periosseous abscess (pigs 2, 3, 9–12, 14, 17–18), from an arthritic lesion (pig 8), from an inoculation site abscess (pig 19), and by immunohistochemistry (pigs 5 and 20)
Of the 56 OM lesions, 1 OM lesion developed in the right humoral bone and 55 OM lesions developed in the right hind limb. The OM lesions most often involved the growth zones of the long bones (Figs. 1 and 2). All lesions were recognized on CT (osteolysis, sequesters, fistulas, and cortical destructions (Figs. 2 and 3)). The lesion size ranged from 0.01 cm3 to 4.18 cm3, but all accumulated [18F]FDG PET (Table 1). The volume of 0.01cm3 seems to be about the limit for evaluation on CT, and the FDG-accumulation helped the interpretation. A small lesion of 0.07 cm3 seen on CT was examined histopathologically to confirm the existence of OM and the presence of coccoid bacteria (Fig. 2).
By reading the [18F]FDG PET/CT, 49 of the 56 OM lesions were identified as having formed sequesters and 44 had formed fistulas (Table 2). Four lesions formed neither sequesters nor fistulas 1 week after the inoculation with S. aureus (Table 2). In three cases of fistula formation, there were no signs of sequester formation on CT. The lesions were however very small (0.01 and 0.02 cm3).
Table 2
Numbers of osteomyelytic lesions among 56 lesions (20 pigs) with fistula and sequester formations judged by CT
OM with sequester
OM with fistula
OM with both sequesters and fistula
OM without neither sequesters nor fistulas
49
44
41
4
Maximal standardized uptake value (SUVmax) was higher in the group that formed sequester than in the group that did not, 5.2 versus 3.9 g/mL (p = 0.023), and SUVmax was also higher in the group that formed fistulous tracts than in the group that did not, 5.6 versus 3.3 g/mL (p < 0.0001). The volume of the OM lesion was similar whether the OM had formed fistulous tracts or not (p = 0.216), whereas sequester formation was more often seen in the larger OM lesions than in the smaller lesions (p < 0.0001). (SUVmax) was higher in OM with fistula formations than in OM with sequester formations, 4.7 g/mL versus 3.4 g/mL (p = 0.002).
The simulated variation of [18F]FDG activity (132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq) demonstrated that for 2 pigs, it was possible to reduce the activity of [18F]FDG to 4.4 MBq for both smaller and larger lesions, thereby reducing the dose of ionizing radiation. This corresponded to an injected activity as low as 0.19 MBq per kilogram BW. Examples of both a small and a large OM are shown in Figs. 4 and 5, respectively. The visual differences in the PET images were minimal although the simulation represents a 30-fold variation of the injected activity.

Discussion

Although considered routine in adults, PET/CT in children has been somewhat limited. As in adults, unnecessary examinations should be avoided. Given a large number of [18F]FDG PET, and especially CT, examinations performed annually throughout the world, reduction of the administered activity without compromising the clinical information being sought is encouraged. The decision to utilize PET/CT in children should be made individually, taking cumulative radiation exposure and the benefit of the scan into account. For all nuclear medicine examinations, the optimum administered activity is a trade-off between radiation dose and the image SNR, which is defining the obtainable clinical sensitivity. The recommended maximum injected activity of [18F]FDG for paediatric use is in the range of 3.7 to 5.2 MBq/kg (0.10–0.14 mCi/kg), with a minimum injected activity of 26 MBq (0.7 mCi) [25]. We have demonstrated that in OM diagnostics, it is possible to reduce the injected activity of a radiotracer even more as our simulation study indicated that even small lesions are clearly visible at an injected activity as low as 0.19 MBq/kg BW (0.005 mCi/kg)). This supports the findings by Gatidis et al. in a PET/MRI study [26].
Many diagnostic tools are available, but no single test has 100% diagnostic accuracy [27]. It may have been easier for our imaging specialist to recognize even small OM lesions on CT scans since the time for interpretation of CT scans was unlimited, and we only examined juvenile animals that were otherwise healthy prior to inoculation. Children, in general, also suffer less from degenerative disorders in joints and bones than adults do, thus leading to the less competing glucose uptake in surrounding tissues which makes the interpretation of PET easier in children. Thus, we believe that our results in the pig model translate well, supporting the application of CT and reduced dosage of [18F]FDG in children to diagnose OM. By using the lower suggested activity of [18F]FDG for PET/CT, the radiation exposure in children will be lower than for [99mTc]MDP/HDP bone scan, which further speaks for using PET/CT.
Johansen and Jensen have reviewed the haematogenously spread S. aureus OM in animal models [20]. This group and others have noticed a similarity to children where OM most often involve the growth zones of the long bones of the lower extremities, perhaps due to more exposure of the long bones of the extremities to small blunt trauma from childhood activities, especially of boys, creating a locus of minor necrosis [28, 29]. Our studies show similar seeding of S. aureus in the growth zones of juvenile pigs as reported previously [14, 15]. This may be due to the characteristic blood supply in long bones of juveniles [10]. OM is most often localized to the lower limbs of children, and 50 % of cases occur in those less than 5 years of age, twice as frequent in males as in females [10]. This could support the argument for applying limited CT of the limbs in older children, which would reduce radiation exposure significantly. While OM typically is solitary, multifocal bone involvement occurs in 7% of children and in 22% of neonates [10]. In neonates, there may be a need for whole body examinations. It may be necessary to perform the scans with some degree of anaesthesia in some children, which could reinforce the idea of initiating the hunt for OM with the quicker CT.
The spatial resolution of our Siemens CT is about 1 mm and with PET about 4 mm. Since the concept of SUV is a normalization of the image voxel values to variation in injected activity and body weight, the apparent SUVmax is not expected to depend upon the tracer activity. However, obviously, the image noise level will increase when the activity is reduced (Poisson statistics). With the current generation of PET/CT scanners, 0.19 MBq/kg BW may thus be about the limit for the interpretation of FDG accumulation in OM.
Especially, small lesions in CT and PET images are affected by the partial volume effect (PVE) [3032]. The quantitative accuracy of PET images may thus be questionable as the spatial resolution is low (4–6 mm) compared to CT and MRI (< 1 mm) and the tissue sampling is limited. We have not made corrections for PVE as we compared with the normal anatomical site in the other limb when detecting OM lesions. The size of all OM lesions was measured on CT and thereby not affected by the limited spatial resolution of PET. To minimize PVE, we used SUVmax instead of the volumetric mean SUV. In clinics, the detection of an OM lesion is more important than the measurement of quantitative PET-tracer uptake. In recent years, a lot of effort has been put into the development of new CT scanners and scanning protocols that markedly reduce the absorbed dose without compromising the diagnostic performance and the image quality [3339]. In the pigs, the glucose metabolism was significantly higher in areas of fistula formation than in areas of sequester formation, indicating the attraction of cells with higher glucose metabolism in the former conditions. Probably, fistulation will reduce the intraosseous pressure in the cortical bones easing the perfusion, the inflammatory process, and the glucose uptake of reparative cells.
The elements normally considered to characterize chronic OM such as the presence of a sequestrum and/or a fistulous tract were very frequent and present as early as during the first week of infection in our pig study. Thus, the differentiation between acute and chronic OM in humans may be different in juvenile pigs indicating more aggressive pathogenesis in juvenile pigs, or that the progression of the disease in children may be faster than assumed.
To summarize, we believe that reduced dosage of [18F]FDG and limited bone localization CT may be useful in children in selected cases. It would be very interesting to examine these aspects in young children as the limitation of this study, obviously, was the use of an animal model. To accurately determine the optimum administered activity for paediatric OM protocols, however, a dedicated receiver operating characteristics (ROC) study in children will have to be performed.

Conclusions

In conclusion, [18F]FDG/CT helps to localize very small OM lesions in peripheral bones. This supports the use of PET/CT, also in children, as it was possible to reduce the injected activity markedly.
It would be interesting to see if the results obtained in our animal model will be relevant in clinical practice of imaging of the haematogenously spread S. aureus OM in peripheral bones, preferably in young children.

Acknowledgements

The work was supported by grant no. 0602-01911B (11-107077) from the Danish Council for Independent Research, Technology and Production Sciences.

Funding

The work was supported by grant no. 0602-01911B (11–107077) from the Danish Council for Independent Research, Technology and Production Sciences.

Availability of data and materials

Please contact the author for data requests.
This is included in the manuscript as is also the approval by the Danish Animal Experimentation Board and by the Danish Occupational Health Surveillance.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Nickerson EK, Hongsuwan LD, Wuthiekanun W, Shaha KR, Srisomang P, Mahavanakul W, Wacharaprechasgul T, Fowler JG Jr, West TE, Teerawatanasuk N, Becher H, White NJ, Chierakul W, Day NP, Peacoc SJ. Staphylococcus aureus bacteremia in a tropical setting: patient outcome and impact of antibiotic resistance. PLoS One. 2009;4:e4308.CrossRef Nickerson EK, Hongsuwan LD, Wuthiekanun W, Shaha KR, Srisomang P, Mahavanakul W, Wacharaprechasgul T, Fowler JG Jr, West TE, Teerawatanasuk N, Becher H, White NJ, Chierakul W, Day NP, Peacoc SJ. Staphylococcus aureus bacteremia in a tropical setting: patient outcome and impact of antibiotic resistance. PLoS One. 2009;4:e4308.CrossRef
2.
Zurück zum Zitat Pääkkkönen M, Kallio PE, Kallio MJT, Peltola H. Management of osteoarticular infections caused by staphylococcus aureus is similar to that of other etiologies. The Pediatric Infectious Disease Journal. 2012;31:436–8. Pääkkkönen M, Kallio PE, Kallio MJT, Peltola H. Management of osteoarticular infections caused by staphylococcus aureus is similar to that of other etiologies. The Pediatric Infectious Disease Journal. 2012;31:436–8.
3.
Zurück zum Zitat Van Schuppen J, van Doom MM, van Rijn RR. Childhood osteomyelitis: imaging characteristics. Insights Imaging. 2012;3:519–33.CrossRef Van Schuppen J, van Doom MM, van Rijn RR. Childhood osteomyelitis: imaging characteristics. Insights Imaging. 2012;3:519–33.CrossRef
4.
5.
Zurück zum Zitat Harris WH, Heaney RP. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969;280:193–202.CrossRef Harris WH, Heaney RP. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969;280:193–202.CrossRef
6.
Zurück zum Zitat Peltola H, Paakkonen M. Acute osteomyelitis in children. N Engl J Med. 2014;370:352–60.CrossRef Peltola H, Paakkonen M. Acute osteomyelitis in children. N Engl J Med. 2014;370:352–60.CrossRef
7.
Zurück zum Zitat Santiago Restrepo C, Gimenez CR, McCarthy K. Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin N Am. 2003;29:89–109.CrossRef Santiago Restrepo C, Gimenez CR, McCarthy K. Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin N Am. 2003;29:89–109.CrossRef
8.
Zurück zum Zitat Littenberg B, Mushlin AI. Technetium bone scanning in the diagnosis of osteomyelitis: a meta-analysis of test performance. Diagnostic Technology Assessment Consortium. J Gen Intern Med. 1992;7:158–64.CrossRef Littenberg B, Mushlin AI. Technetium bone scanning in the diagnosis of osteomyelitis: a meta-analysis of test performance. Diagnostic Technology Assessment Consortium. J Gen Intern Med. 1992;7:158–64.CrossRef
9.
Zurück zum Zitat Van den Wyngaert T, Strobel K, Kampen WU, van der Kuwert Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F, EANM Bone &Joint Committee and Oncology Committee. The EANM practice and guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–38.CrossRef Van den Wyngaert T, Strobel K, Kampen WU, van der Kuwert Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F, EANM Bone &Joint Committee and Oncology Committee. The EANM practice and guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–38.CrossRef
10.
Zurück zum Zitat Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infections and inflammation in children: a review. Semin Nucl Med. 2018;48:148–65.CrossRef Parisi MT, Otjen JP, Stanescu AL, Shulkin BL. Radionuclide imaging of infections and inflammation in children: a review. Semin Nucl Med. 2018;48:148–65.CrossRef
11.
Zurück zum Zitat Pineda C, Vargas A, RodriGuez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin N Am. 2006;20:789–825.CrossRef Pineda C, Vargas A, RodriGuez AV. Imaging of osteomyelitis: current concepts. Infect Dis Clin N Am. 2006;20:789–825.CrossRef
12.
Zurück zum Zitat Jamar J, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guide-line for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.CrossRef Jamar J, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, Israel O, Martin-Comin J, Signore A. EANM/SNMMI guide-line for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.CrossRef
13.
Zurück zum Zitat Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TG, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:1–18.CrossRef Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TG, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:1–18.CrossRef
14.
Zurück zum Zitat Nielsen OL, Afzelius P, Bender D, Schønheyder HC, Leifsson PS, Nielsen KM, Larsen JO, Jensen SB, Alstrup AK. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous staphylococcus aureus osteomyelitis model. Am J Nucl Med Mol Imaging. 2015;5:169–82.PubMedPubMedCentral Nielsen OL, Afzelius P, Bender D, Schønheyder HC, Leifsson PS, Nielsen KM, Larsen JO, Jensen SB, Alstrup AK. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous staphylococcus aureus osteomyelitis model. Am J Nucl Med Mol Imaging. 2015;5:169–82.PubMedPubMedCentral
15.
Zurück zum Zitat Afzelius P, Nielsen OL, Alstrup AKO, Bender D, Leifsson PS, Jensen SB, Schønheyder HC. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions. Am J Nucl Med Mol Imaging. 2016;6:42–58.PubMedPubMedCentral Afzelius P, Nielsen OL, Alstrup AKO, Bender D, Leifsson PS, Jensen SB, Schønheyder HC. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions. Am J Nucl Med Mol Imaging. 2016;6:42–58.PubMedPubMedCentral
16.
Zurück zum Zitat Afzelius P, Alstrup AKO, Schønheyder HC, Borghammer P, Jensen SB, Bender D, Nielsen OL. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99mTc-DPD, and 18F-FDG. Am J Nucl Med Mol Imaging. 2016;6:286–300.PubMedPubMedCentral Afzelius P, Alstrup AKO, Schønheyder HC, Borghammer P, Jensen SB, Bender D, Nielsen OL. Utility of 11C-methionine and 11C-donepezil for imaging of Staphylococcus aureus induced osteomyelitis in a juvenile porcine model: comparison to autologous 111In-labelled leukocytes, 99mTc-DPD, and 18F-FDG. Am J Nucl Med Mol Imaging. 2016;6:286–300.PubMedPubMedCentral
17.
Zurück zum Zitat Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23:59–72.CrossRef Calhoun JH, Manring MM, Shirtliff M. Osteomyelitis of the long bones. Semin Plast Surg. 2009;23:59–72.CrossRef
18.
Zurück zum Zitat Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician. 2001;63:2413–20.PubMed Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician. 2001;63:2413–20.PubMed
19.
Zurück zum Zitat Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A:2305–18.CrossRef Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am. 2004;86-A:2305–18.CrossRef
20.
Zurück zum Zitat Johansen LK, Jensen HE. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review. Orthop Res Rev. 2013;5:51–64.CrossRef Johansen LK, Jensen HE. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review. Orthop Res Rev. 2013;5:51–64.CrossRef
21.
Zurück zum Zitat Alstrup AK, Nielsen KM, Schønheyder HC, Jensen SB, Afzelius P, Leifsson PS, Nielsen OL. Refinement of a hematogenous localized osteomyelitis model in pigs. Scand J Lab Anim Sci. 2016;42:1–4. Alstrup AK, Nielsen KM, Schønheyder HC, Jensen SB, Afzelius P, Leifsson PS, Nielsen OL. Refinement of a hematogenous localized osteomyelitis model in pigs. Scand J Lab Anim Sci. 2016;42:1–4.
22.
Zurück zum Zitat Alstrup AK, Winterdahl M. Imaging techniques in large animals. Scand J Lab Anim Sci. 2009;36:55–66. Alstrup AK, Winterdahl M. Imaging techniques in large animals. Scand J Lab Anim Sci. 2009;36:55–66.
23.
Zurück zum Zitat Aalbæk B, Jensen LK, Jensen HE, Olsen JE, Christensen H. Whole-genome sequence of Staphylococcus aureus S54F9 isolated from a chronic disseminated porcine lung abscess and used in human infection models. Genome Announc. 2015;3:e01207–15.CrossRef Aalbæk B, Jensen LK, Jensen HE, Olsen JE, Christensen H. Whole-genome sequence of Staphylococcus aureus S54F9 isolated from a chronic disseminated porcine lung abscess and used in human infection models. Genome Announc. 2015;3:e01207–15.CrossRef
24.
Zurück zum Zitat Jensen HE, Nielsen O, Agerholm JS, Iburg T, Johansen LK, Johannesson E, Møller M, Jahn L, Munk L, Aalbæk B, Leifsson PS. A non-traumatic Staphylococcus aureus osteomyelitis model in pigs. In vivo. 2010;24:257–64.PubMed Jensen HE, Nielsen O, Agerholm JS, Iburg T, Johansen LK, Johannesson E, Møller M, Jahn L, Munk L, Aalbæk B, Leifsson PS. A non-traumatic Staphylococcus aureus osteomyelitis model in pigs. In vivo. 2010;24:257–64.PubMed
25.
Zurück zum Zitat Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.CrossRef Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.CrossRef
26.
Zurück zum Zitat Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.CrossRef Gatidis S, Schmidt H, la Fougere C, Nikolaou K, Schwenzer NF, Schäfer JF. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI. Eur J Nucl Med Mol Imaging. 2016;43:2283–9.CrossRef
27.
Zurück zum Zitat Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47:286–303.CrossRef Signore A, Glaudemans AWJM, Gheysens O, Lauri C, Catalano OA. Nuclear medicine imaging in pediatric infection or chronic inflammatory diseases. Semin Nucl Med. 2017;47:286–303.CrossRef
28.
Zurück zum Zitat Johansen LK, Koch J, Kirketerp-Møller K, Wamsler OJ, Nielsen OL, Leifsson PS, Frees D, Aalbæk B, Jensen HB. Therapy of haematogenous osteomyelitis-a comparative study in a porcine model and Angolan children. In Vivo. 2013;27:305–12.PubMed Johansen LK, Koch J, Kirketerp-Møller K, Wamsler OJ, Nielsen OL, Leifsson PS, Frees D, Aalbæk B, Jensen HB. Therapy of haematogenous osteomyelitis-a comparative study in a porcine model and Angolan children. In Vivo. 2013;27:305–12.PubMed
29.
Zurück zum Zitat Dartnell J, Ramachandran N, Kartcuburian M. Haematogeneous acute and subacute paediatric osteomyelitis: a systemic review of the literature. J Bone Joint Surg Br. 2012;94:584–95.CrossRef Dartnell J, Ramachandran N, Kartcuburian M. Haematogeneous acute and subacute paediatric osteomyelitis: a systemic review of the literature. J Bone Joint Surg Br. 2012;94:584–95.CrossRef
30.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef
31.
Zurück zum Zitat Bettinardi V, Castiglioni I, DeBernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clinical and Translational Imaging. 2014;2:199–218.CrossRef Bettinardi V, Castiglioni I, DeBernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clinical and Translational Imaging. 2014;2:199–218.CrossRef
32.
Zurück zum Zitat Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.CrossRef Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308.CrossRef
33.
Zurück zum Zitat Padole A, Khawaja RDA, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR. 2015;204:W384–92.CrossRef Padole A, Khawaja RDA, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR. 2015;204:W384–92.CrossRef
34.
Zurück zum Zitat Den Harder AM, Willemink MJ, De Ruiter QMB, De Jong PA, Schilham AM, Krestin GP, Leiner T, Budde RP. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. Br J Radiol. 2016;89:20150068.CrossRef Den Harder AM, Willemink MJ, De Ruiter QMB, De Jong PA, Schilham AM, Krestin GP, Leiner T, Budde RP. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. Br J Radiol. 2016;89:20150068.CrossRef
35.
Zurück zum Zitat Leipsic JL, Heilbron BG, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.CrossRef Leipsic JL, Heilbron BG, Hague C. Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging. 2012;28:613–20.CrossRef
36.
Zurück zum Zitat Den Harder AM, Willemink MJ, De Ruiter QMB, Schilham AM, Krestin GP, Leiner T, de Jong PA, Budde RP. Achievable dose reduction using iterative reconstruction for chest computed tomography: a systematic review. Eur J Radiol. 2015;84:2307–13.CrossRef Den Harder AM, Willemink MJ, De Ruiter QMB, Schilham AM, Krestin GP, Leiner T, de Jong PA, Budde RP. Achievable dose reduction using iterative reconstruction for chest computed tomography: a systematic review. Eur J Radiol. 2015;84:2307–13.CrossRef
37.
Zurück zum Zitat Liu HL. Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging and Radiation Sciences. 2014;45:131–6.CrossRef Liu HL. Model-based iterative reconstruction: a promising algorithm for today’s computed tomography imaging. J Med Imaging and Radiation Sciences. 2014;45:131–6.CrossRef
38.
Zurück zum Zitat Gatewood MO, Grubish L, Busey JM, Shuman WP, Strote J. The use of model-based iterative reconstruction to decrease ED radiation exposure. Am J Emerg Med. 2015;33:559–62.CrossRef Gatewood MO, Grubish L, Busey JM, Shuman WP, Strote J. The use of model-based iterative reconstruction to decrease ED radiation exposure. Am J Emerg Med. 2015;33:559–62.CrossRef
39.
Zurück zum Zitat Klink T, Obmann V, Heverhagen J, Stork A, Adam G, Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol. 2014;83:1645–54.CrossRef Klink T, Obmann V, Heverhagen J, Stork A, Adam G, Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol. 2014;83:1645–54.CrossRef
40.
Zurück zum Zitat Jødal L, Nielsen OL, Afzelius P, Alstrup AKO, Hansen SB. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model. Eur J Nucl Med Mol Imag Res. 2017;7:1–10. Jødal L, Nielsen OL, Afzelius P, Alstrup AKO, Hansen SB. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model. Eur J Nucl Med Mol Imag Res. 2017;7:1–10.
41.
Zurück zum Zitat Jødal L, Jensen SB, Nielsen OL, Afzelius P, Borghammer P, Alstrup AKO, Hansen SB. Kinetic modelling of infection tracers [18F]FDG, [68Ga]Ga-citrate, [11C]methionine and [11C]donepezil in a porcine osteomyelitis model. Contrast Media & Molecular Imaging. 2017; https://doi.org/10.1155/2017/9256858. Jødal L, Jensen SB, Nielsen OL, Afzelius P, Borghammer P, Alstrup AKO, Hansen SB. Kinetic modelling of infection tracers [18F]FDG, [68Ga]Ga-citrate, [11C]methionine and [11C]donepezil in a porcine osteomyelitis model. Contrast Media & Molecular Imaging. 2017; https://​doi.​org/​10.​1155/​2017/​9256858.
Metadaten
Titel
An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [18F]FDG PET/CT —the inference from a juvenile porcine model
verfasst von
P. Afzelius
O. L. Nielsen
H. C. Schønheyder
A.K.O. Alstrup
S. B. Hansen
Publikationsdatum
01.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
EJNMMI Research / Ausgabe 1/2019
Elektronische ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0498-5

Weitere Artikel der Ausgabe 1/2019

EJNMMI Research 1/2019 Zur Ausgabe