Skip to main content
Erschienen in: World Journal of Pediatrics 1/2019

20.10.2018 | Review Article

An update on the role of RANKL–RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases

verfasst von: Giacomina Brunetti, Gabriele D’Amato, Mariangela Chiarito, Apollonia Tullo, Graziana Colaianni, Silvia Colucci, Maria Grano, Maria Felicia Faienza

Erschienen in: World Journal of Pediatrics | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/β-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/β-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies.

Data sources

The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria.

Results

We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader–Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed.

Conclusions

The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.
Literatur
1.
Zurück zum Zitat Lu J, Shin Y, Yen MS, Sun SS. Peak bone mass and patterns of change in total bone mineral density and bone mineral contents from childhood into young adulthood. J Clin Densitom. 2016;19:180–91.CrossRefPubMed Lu J, Shin Y, Yen MS, Sun SS. Peak bone mass and patterns of change in total bone mineral density and bone mineral contents from childhood into young adulthood. J Clin Densitom. 2016;19:180–91.CrossRefPubMed
2.
Zurück zum Zitat Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol. 1999;106:167–70.CrossRefPubMed Massey HM, Flanagan AM. Human osteoclasts derive from CD14-positive monocytes. Br J Haematol. 1999;106:167–70.CrossRefPubMed
3.
Zurück zum Zitat Boyle WJ, Scott Simonet W, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed Boyle WJ, Scott Simonet W, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.CrossRefPubMed
4.
Zurück zum Zitat Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.CrossRefPubMed Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.CrossRefPubMed
6.
7.
Zurück zum Zitat Kato M, Patel MS, Lavasseur R, Lobov I, Chang BH, Glass DA, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:763–71.CrossRef Kato M, Patel MS, Lavasseur R, Lobov I, Chang BH, Glass DA, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157:763–71.CrossRef
8.
Zurück zum Zitat Bodine PV, Zhao W, Kharode Y, Bex FJ, Lambert AJ, Goad MB, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18:1222–37.CrossRefPubMed Bodine PV, Zhao W, Kharode Y, Bex FJ, Lambert AJ, Goad MB, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol. 2004;18:1222–37.CrossRefPubMed
9.
Zurück zum Zitat Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc- Royer I, Vayssière B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.CrossRefPubMed Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc- Royer I, Vayssière B, et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 2006;21:934–45.CrossRefPubMed
10.
Zurück zum Zitat Delgado-Calle J, Sato AJ, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29–37.CrossRefPubMed Delgado-Calle J, Sato AJ, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29–37.CrossRefPubMed
11.
Zurück zum Zitat Baron R, Kneissel M. Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:1791–2.CrossRef Baron R, Kneissel M. Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:1791–2.CrossRef
12.
Zurück zum Zitat Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112:196–207.CrossRefPubMedPubMedCentral Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112:196–207.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Dalbeth N, Pool B, Smith T, Callon KE, Lobo M, Taylor WJ, et al. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther. 2010;12:R164.CrossRefPubMedPubMedCentral Dalbeth N, Pool B, Smith T, Callon KE, Lobo M, Taylor WJ, et al. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther. 2010;12:R164.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta analysis of cross sectional studies. Diabetes Metab Res Rev. 2014;30:531–42.CrossRefPubMed Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta analysis of cross sectional studies. Diabetes Metab Res Rev. 2014;30:531–42.CrossRefPubMed
15.
Zurück zum Zitat Bechtold S, Dirlenbach I, Raile K, Noelle V, Bonfing W, Schwarz HP. Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry: data using peripheral quantitative computed tomography. Pediatrics. 2006;118:627–34.CrossRef Bechtold S, Dirlenbach I, Raile K, Noelle V, Bonfing W, Schwarz HP. Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry: data using peripheral quantitative computed tomography. Pediatrics. 2006;118:627–34.CrossRef
16.
Zurück zum Zitat Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care. 2015;38:1913–20.CrossRefPubMedPubMedCentral Weber DR, Haynes K, Leonard MB, Willi SM, Denburg MR. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care. 2015;38:1913–20.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Liao CC, Lin CS, Shih CC, Yeh CC, Chang YC, Lee YW, et al. Increased risk of fracture and post fracture adverse events in patients with diabetes: two nationwide population-based retrospective cohort studies. Diabetes Care. 2014;37:2246–52.CrossRefPubMed Liao CC, Lin CS, Shih CC, Yeh CC, Chang YC, Lee YW, et al. Increased risk of fracture and post fracture adverse events in patients with diabetes: two nationwide population-based retrospective cohort studies. Diabetes Care. 2014;37:2246–52.CrossRefPubMed
18.
Zurück zum Zitat Fowlkes JL, Bunn RC, Thrailkill KM. Contributions of the insulin/insulin-like growth factor-1 axis to diabetic osteopathy. J Diabetes Metab. 2011;1:S1–003.PubMedPubMedCentral Fowlkes JL, Bunn RC, Thrailkill KM. Contributions of the insulin/insulin-like growth factor-1 axis to diabetic osteopathy. J Diabetes Metab. 2011;1:S1–003.PubMedPubMedCentral
19.
Zurück zum Zitat Fowlkes JL, Nyman JS, Bunn RC, Jo C, Wahl EC, Liu L, et al. Osteo-promoting effects of insulin-like growth factor I (IGF-1) in a mouse model of type 1 diabetes. Bone. 2013;57:36–40.CrossRefPubMedPubMedCentral Fowlkes JL, Nyman JS, Bunn RC, Jo C, Wahl EC, Liu L, et al. Osteo-promoting effects of insulin-like growth factor I (IGF-1) in a mouse model of type 1 diabetes. Bone. 2013;57:36–40.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.CrossRefPubMed Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99:411–24.CrossRefPubMed
21.
Zurück zum Zitat Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, et al. High serum pentosidine but not esRAGE is associated with prevalent fracture type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25:1527–33.CrossRefPubMed Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, et al. High serum pentosidine but not esRAGE is associated with prevalent fracture type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25:1527–33.CrossRefPubMed
22.
Zurück zum Zitat Tsentidis C, Gourgiotis D, Kossiva L, Doulgeraki A, Marmarinos A, Galli-Tsinopoulou A, et al. Higher levels of s-RANK-L and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016;27:1631–43.CrossRefPubMed Tsentidis C, Gourgiotis D, Kossiva L, Doulgeraki A, Marmarinos A, Galli-Tsinopoulou A, et al. Higher levels of s-RANK-L and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016;27:1631–43.CrossRefPubMed
23.
Zurück zum Zitat Faienza MF, Ventura A, Delvecchio M, Fusillo A, Piacente L, Aceto G, et al. High sclerostin and Dickkopf-1 (DKK-1) serum levels in children and adolescents with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2017;102:1174–81.PubMed Faienza MF, Ventura A, Delvecchio M, Fusillo A, Piacente L, Aceto G, et al. High sclerostin and Dickkopf-1 (DKK-1) serum levels in children and adolescents with type 1 diabetes mellitus. J Clin Endocrinol Metab. 2017;102:1174–81.PubMed
24.
Zurück zum Zitat Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Increased levels of Dickkopf-1 (DKK-1) are indicative of Wnt/β catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporosis Intern. 2017;28:945–53.CrossRef Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Increased levels of Dickkopf-1 (DKK-1) are indicative of Wnt/β catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporosis Intern. 2017;28:945–53.CrossRef
25.
Zurück zum Zitat Faienza MF, Brunetti G, Sanesi L, Colaianni G, Celi M, Piacente L, et al. High irisin levels are associated with better glycemic control and bone health in children with type 1 diabetes. Diabetes Res Clin Pract. 2018;141:10–7.CrossRefPubMed Faienza MF, Brunetti G, Sanesi L, Colaianni G, Celi M, Piacente L, et al. High irisin levels are associated with better glycemic control and bone health in children with type 1 diabetes. Diabetes Res Clin Pract. 2018;141:10–7.CrossRefPubMed
26.
Zurück zum Zitat Natalicchio A, Marrano N, Biondi G, Spagnuolo R, Labarbuta R, Porreca I, et al. The myokine irisin is released in response to saturated fatty acids and promotes pancreatic β-cell survival and insulin secretion. Diabetes. 2017;66:2849–56.CrossRefPubMed Natalicchio A, Marrano N, Biondi G, Spagnuolo R, Labarbuta R, Porreca I, et al. The myokine irisin is released in response to saturated fatty acids and promotes pancreatic β-cell survival and insulin secretion. Diabetes. 2017;66:2849–56.CrossRefPubMed
27.
Zurück zum Zitat Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA. 2015;112:12157–62.CrossRefPubMedPubMedCentral Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA. 2015;112:12157–62.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7:2811.CrossRefPubMedPubMedCentral Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7:2811.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density. Pediatr Diabetes. 2016;17:289–99.CrossRefPubMed Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density. Pediatr Diabetes. 2016;17:289–99.CrossRefPubMed
30.
Zurück zum Zitat Neumann T, Hofbauer LC, Rauner M, Lodes S, Kästner B, Franke S, et al. Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol. 2014;80:649–55.CrossRef Neumann T, Hofbauer LC, Rauner M, Lodes S, Kästner B, Franke S, et al. Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol. 2014;80:649–55.CrossRef
31.
Zurück zum Zitat Felício KM, de Souza ACCB, Neto JFA, de Melo FTC, Carvalho CT, Arbage TP, et al. Glycemic variability and insulin needs in patients with type 1 diabetes mellitus supplemented with vitamin D: a pilot study using continuous glucose monitoring system. Curr Diabetes Rev. 2018;14:395–403.CrossRefPubMed Felício KM, de Souza ACCB, Neto JFA, de Melo FTC, Carvalho CT, Arbage TP, et al. Glycemic variability and insulin needs in patients with type 1 diabetes mellitus supplemented with vitamin D: a pilot study using continuous glucose monitoring system. Curr Diabetes Rev. 2018;14:395–403.CrossRefPubMed
32.
Zurück zum Zitat Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatr. 2015;4:304–17.PubMedPubMedCentral Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatr. 2015;4:304–17.PubMedPubMedCentral
33.
Zurück zum Zitat Millucci L, Spreafico A, Tinti L, Braconi D, Ghezzi L, Paccagnini E, et al. Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim Biophys Acta. 2012;1822:1682–16891.CrossRefPubMedPubMedCentral Millucci L, Spreafico A, Tinti L, Braconi D, Ghezzi L, Paccagnini E, et al. Alkaptonuria is a novel human secondary amyloidogenic disease. Biochim Biophys Acta. 2012;1822:1682–16891.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Millucci L, Braconi D, Bernardini G, Lupetti P, Rovensky J, Ranganath L, et al. Amyloidosis in alkaptonuria. J Inherit Metab Dis. 2015;38:797–805.CrossRefPubMed Millucci L, Braconi D, Bernardini G, Lupetti P, Rovensky J, Ranganath L, et al. Amyloidosis in alkaptonuria. J Inherit Metab Dis. 2015;38:797–805.CrossRefPubMed
35.
Zurück zum Zitat Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E. Proietta M bone metabolism in ochronotic patients. J Intern Med. 2003;254:296–300.CrossRefPubMed Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E. Proietta M bone metabolism in ochronotic patients. J Intern Med. 2003;254:296–300.CrossRefPubMed
36.
Zurück zum Zitat Brunetti G, Tummolo A, D’amato G, Gaeta A, Ortolani F, Piacente L, et al. Mechanisms of enhanced osteoclastogenesis in alkaptonuria. Am J Pathol. 2018;188:1059–68.CrossRefPubMed Brunetti G, Tummolo A, D’amato G, Gaeta A, Ortolani F, Piacente L, et al. Mechanisms of enhanced osteoclastogenesis in alkaptonuria. Am J Pathol. 2018;188:1059–68.CrossRefPubMed
37.
Zurück zum Zitat Brunetti G, Rizzi R, Oranger A, Gigante I, Mori G, Taurino G, et al. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget. 2014;5:12950–67.CrossRefPubMedPubMedCentral Brunetti G, Rizzi R, Oranger A, Gigante I, Mori G, Taurino G, et al. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget. 2014;5:12950–67.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8.CrossRefPubMedPubMedCentral Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Brunetti G, Faienza MF, Colaianni G, Gigante I, Oranger A, Pignataro P, et al. Impairment of bone remodeling in LIGHT/TNFSF14-deficient mice. J Bone Miner Res. 2018;33:704–19.CrossRefPubMed Brunetti G, Faienza MF, Colaianni G, Gigante I, Oranger A, Pignataro P, et al. Impairment of bone remodeling in LIGHT/TNFSF14-deficient mice. J Bone Miner Res. 2018;33:704–19.CrossRefPubMed
40.
Zurück zum Zitat Christoforidis A, Economou M, Papadopoulou E, Kazantzidou E, Farmaki E, Tzimouli V, et al. Comparative study of dual energy X-ray absorptiometry and quantitative ultrasonography with the use of biochemical markers of bone turnover in boys with haemophilia. Haemophilia. 2011;17:217–22.CrossRef Christoforidis A, Economou M, Papadopoulou E, Kazantzidou E, Farmaki E, Tzimouli V, et al. Comparative study of dual energy X-ray absorptiometry and quantitative ultrasonography with the use of biochemical markers of bone turnover in boys with haemophilia. Haemophilia. 2011;17:217–22.CrossRef
41.
Zurück zum Zitat Katsarou O, Terpos E, Chatzismalis P, Provelengios S, Adraktas T, Hadjidakis D, et al. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection. Ann Haematol. 2010;89:67–74.CrossRef Katsarou O, Terpos E, Chatzismalis P, Provelengios S, Adraktas T, Hadjidakis D, et al. Increased bone resorption is implicated in the pathogenesis of bone loss in hemophiliacs: correlations with hemophilic arthropathy and HIV infection. Ann Haematol. 2010;89:67–74.CrossRef
42.
Zurück zum Zitat Giordano P, Brunetti G, Lassandro G, Notarangelo LD, Luciani M, Mura RM, et al. High serum sclerostin levels in children with haemophilia A. Br J Haematol. 2016;172:293–5. CrossRefPubMed Giordano P, Brunetti G, Lassandro G, Notarangelo LD, Luciani M, Mura RM, et al. High serum sclerostin levels in children with haemophilia A. Br J Haematol. 2016;172:293–5.  CrossRefPubMed
44.
Zurück zum Zitat Uveges TE, Collin-Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, et al. Cellular mechanism of decreased bpne in Brtl mouse model of OI: imbalance of osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res. 2008;23:1983–94.CrossRefPubMedPubMedCentral Uveges TE, Collin-Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, et al. Cellular mechanism of decreased bpne in Brtl mouse model of OI: imbalance of osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res. 2008;23:1983–94.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Brunetti G, Papadia F, Tummolo A, Fischetto R, Nicastro F, Piacente L, et al. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int. 2016;304:546–54. Brunetti G, Papadia F, Tummolo A, Fischetto R, Nicastro F, Piacente L, et al. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int. 2016;304:546–54.
46.
Zurück zum Zitat Camacho NP, Raggio CL, Doty SB, Root L, Zraick V, Ilg WA, et al. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int. 2001;69:94–101.CrossRefPubMed Camacho NP, Raggio CL, Doty SB, Root L, Zraick V, Ilg WA, et al. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int. 2001;69:94–101.CrossRefPubMed
47.
Zurück zum Zitat Evans KD, Lau ST, Oberbauer AM, Martin RB. Alendronate affects long bone length and growth plate morphology in the oim mouse model for osteogenesis imperfecta. Bone. 2003;2:268–74.CrossRef Evans KD, Lau ST, Oberbauer AM, Martin RB. Alendronate affects long bone length and growth plate morphology in the oim mouse model for osteogenesis imperfecta. Bone. 2003;2:268–74.CrossRef
48.
Zurück zum Zitat McCarthy EA, Raggio CL, Hossack MD, Miller EA, Jain S, Boskey AL, et al. Alendronate treatment for infants with osteogenesis imperfecta: demonstration of efficacy in a mouse model. Pediatr Res. 2002;52:660–70.CrossRefPubMed McCarthy EA, Raggio CL, Hossack MD, Miller EA, Jain S, Boskey AL, et al. Alendronate treatment for infants with osteogenesis imperfecta: demonstration of efficacy in a mouse model. Pediatr Res. 2002;52:660–70.CrossRefPubMed
49.
Zurück zum Zitat Delos D, Yang X, Ricciardi BF, Myers ER, Bostrom MP, Camacho NP. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res. 2008;26:153–64.CrossRefPubMedPubMedCentral Delos D, Yang X, Ricciardi BF, Myers ER, Bostrom MP, Camacho NP. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res. 2008;26:153–64.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Bargman R, Huang A, Boskey A, Raggio C, Pleshko N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res. 2010;51:123–31.CrossRefPubMedPubMedCentral Bargman R, Huang A, Boskey A, Raggio C, Pleshko N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res. 2010;51:123–31.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Bargman R, Posham R, Boskey A, Carter E, DiCarlo E, Verdelis K, et al. High- and low-dose OPG-Fc cause osteopetrosis-like changes in infant mice. Pediatr Res. 2012;72:495–501.CrossRefPubMedPubMedCentral Bargman R, Posham R, Boskey A, Carter E, DiCarlo E, Verdelis K, et al. High- and low-dose OPG-Fc cause osteopetrosis-like changes in infant mice. Pediatr Res. 2012;72:495–501.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Bargman R, Posham R, Boskey AL, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos Int. 2012;23:1141–50.CrossRefPubMed Bargman R, Posham R, Boskey AL, DiCarlo E, Raggio C, Pleshko N. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos Int. 2012;23:1141–50.CrossRefPubMed
53.
Zurück zum Zitat Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12:183–8.PubMed Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12:183–8.PubMed
54.
Zurück zum Zitat Joint LWPES/ESPE CAH Group. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab. 2002;87:4048–53.CrossRef Joint LWPES/ESPE CAH Group. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab. 2002;87:4048–53.CrossRef
55.
Zurück zum Zitat Ventura A, Brunetti G, Colucci S, Oranger A, Ladisa F, Cavallo L, et al. Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency. Biomed Res Int. 2013;2013:250462.CrossRefPubMedPubMedCentral Ventura A, Brunetti G, Colucci S, Oranger A, Ladisa F, Cavallo L, et al. Glucocorticoid-induced osteoporosis in children with 21-hydroxylase deficiency. Biomed Res Int. 2013;2013:250462.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Faienza MF, Brunetti G, Colucci S, Piacente L, Ciccarelli M, Giordani L, et al. Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor κB ligand/osteoprotegerin imbalance. J Clin Endocrinol Metab. 2009;94:2269–76.CrossRefPubMed Faienza MF, Brunetti G, Colucci S, Piacente L, Ciccarelli M, Giordani L, et al. Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor κB ligand/osteoprotegerin imbalance. J Clin Endocrinol Metab. 2009;94:2269–76.CrossRefPubMed
57.
Zurück zum Zitat Abd El Dayem SM, Anwar GM, Salama H, Kamel AF, Emara N. Bone mineral density, bone turnover markers, lean mass, and fat mass in Egyptian children with congenital adrenal hyperplasia. Arch Med Sci. 2010;6:104–10.CrossRefPubMedPubMedCentral Abd El Dayem SM, Anwar GM, Salama H, Kamel AF, Emara N. Bone mineral density, bone turnover markers, lean mass, and fat mass in Egyptian children with congenital adrenal hyperplasia. Arch Med Sci. 2010;6:104–10.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Metwalley KA, El-Saied AR. Bone mineral status in Egyptian children with classical congenital adrenal hyperplasia. A single center study from Upper Egypt. Indian J Endocrinol Metab. 2014;18:700–4.PubMedPubMedCentral Metwalley KA, El-Saied AR. Bone mineral status in Egyptian children with classical congenital adrenal hyperplasia. A single center study from Upper Egypt. Indian J Endocrinol Metab. 2014;18:700–4.PubMedPubMedCentral
59.
Zurück zum Zitat Brunetti G, Faienza MF, Piacente L, Ventura A, Oranger A, Carbone C, et al. High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment. Am J Physiol Endocrinol Metab. 2013;304:546–54.CrossRef Brunetti G, Faienza MF, Piacente L, Ventura A, Oranger A, Carbone C, et al. High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment. Am J Physiol Endocrinol Metab. 2013;304:546–54.CrossRef
60.
Zurück zum Zitat Butler MG, Manzardo AM, Forster JL. Prader–Willi syndrome: clinical genetics and diagnostic aspects with treatment approaches. Curr Pediatr Rev. 2016;12:136–66.CrossRefPubMedPubMedCentral Butler MG, Manzardo AM, Forster JL. Prader–Willi syndrome: clinical genetics and diagnostic aspects with treatment approaches. Curr Pediatr Rev. 2016;12:136–66.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader–Willi syndrome. Genet Med. 2012;14:10–26.CrossRefPubMed Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader–Willi syndrome. Genet Med. 2012;14:10–26.CrossRefPubMed
62.
Zurück zum Zitat Vestergaard P, Kristensen K, Bruun JM, Østergaard JR, Heickendorff L, Mosekilde L, et al. Reduced bone mineral density and increased bone turnover in Prader–Willi syndrome compared with controls matched for sex and body mass index—a cross-sectional study. J Pediatr. 2004;144:614–9.CrossRefPubMed Vestergaard P, Kristensen K, Bruun JM, Østergaard JR, Heickendorff L, Mosekilde L, et al. Reduced bone mineral density and increased bone turnover in Prader–Willi syndrome compared with controls matched for sex and body mass index—a cross-sectional study. J Pediatr. 2004;144:614–9.CrossRefPubMed
63.
Zurück zum Zitat Carrel AL, Myers SE, Whitman BY, Allen DB. Benefits of long-term GH therapy in Prader–Willi syndrome: a 4-year study. J Clin Endocrinol Metab. 2002;87:1581–15885.CrossRefPubMed Carrel AL, Myers SE, Whitman BY, Allen DB. Benefits of long-term GH therapy in Prader–Willi syndrome: a 4-year study. J Clin Endocrinol Metab. 2002;87:1581–15885.CrossRefPubMed
64.
Zurück zum Zitat Brunetti G, Grugni G, Piacente L, Delvecchio M, Ventura A, Giordano P, et al. Analysis of circulating mediators of bone remodelling in Prader–Willi syndrome. Calcific Tissue Int. 2018;102:635–43.CrossRef Brunetti G, Grugni G, Piacente L, Delvecchio M, Ventura A, Giordano P, et al. Analysis of circulating mediators of bone remodelling in Prader–Willi syndrome. Calcific Tissue Int. 2018;102:635–43.CrossRef
65.
Zurück zum Zitat Faienza MF, Chiarito M, D’amato G, Colaianni G, Colucci S, Grano M, et al. Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther. 2018;18:149–57.CrossRefPubMed Faienza MF, Chiarito M, D’amato G, Colaianni G, Colucci S, Grano M, et al. Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther. 2018;18:149–57.CrossRefPubMed
66.
Zurück zum Zitat Hoyer-Kuhn H, Franklin J, Allo G, Kron M, Netzer C, Eysel P, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect-a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16:24–32.PubMedPubMedCentral Hoyer-Kuhn H, Franklin J, Allo G, Kron M, Netzer C, Eysel P, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect-a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16:24–32.PubMedPubMedCentral
Metadaten
Titel
An update on the role of RANKL–RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases
verfasst von
Giacomina Brunetti
Gabriele D’Amato
Mariangela Chiarito
Apollonia Tullo
Graziana Colaianni
Silvia Colucci
Maria Grano
Maria Felicia Faienza
Publikationsdatum
20.10.2018
Verlag
Childrens Hospital, Zhejiang University School of Medicine
Erschienen in
World Journal of Pediatrics / Ausgabe 1/2019
Print ISSN: 1708-8569
Elektronische ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-018-0198-7

Weitere Artikel der Ausgabe 1/2019

World Journal of Pediatrics 1/2019 Zur Ausgabe

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.